scholarly journals Influence of the Manufacturing Parameters on the Compressive Properties of Closed Cell Aluminum Foams

2020 ◽  
Vol 64 (2) ◽  
pp. 172-178
Author(s):  
Muhammad Ail Naeem ◽  
András Gábora ◽  
Tamás Mankovits

The important properties of metallic foams such as good energy absorption, recyclability, noise absorption, etc. have put them at the forefront of technological development over recent years, especially for fields where the weight is a major concern. The production however, is a highly stochastic process which leads to their inhomogeneous nature. In this paper closed-cell aluminum foam specimens have been produced by direct foaming technique and investigated mechanically, following the principles of Taguchi Design of Experiments (DOE). The important compressive properties of the produced specimens such as the structural stiffness, yield strength, plateau stress and energy absorption have been measured through uniaxial compression tests and the effect of the manufacturing parameters (the temperature, the mixing speed and the amount of foaming agent added) on the energy absorption capacity of the foam is analyzed. From experiments, it was observed that the temperature is the most dominant control factor for the energy absorption capability of the foam followed by the foaming content and the mixing speed. ANOVA statistical analysis was also performed to determine the statistical significance of these parameters on the response.

Author(s):  
Hamid Ali ◽  
András Gábora ◽  
Muhammad Ali Naeem ◽  
Gábor Kalácska ◽  
Tamás Mankovits

AbstractOver the recent years metallic foams have become a popular material due to their unique characteristics like low density coupled with beneficial mechanical properties such as good energy absorption, heat resistance, flame resistance, etc. However, their production processes (foaming) is highly stochastic which results in an inhomogeneous foam structure. Hybrid aluminum foam with closed-cell has been manufactured using direct foaming method coupled with the Taguchi Design of Experiments (DOE). Image analysis has been carried out to determine the average porous area and pore size. The influence of the production parameters (amount of foaming agent added, mixing speed and temperature) on the pore size and the porous area has been analyzed using the statistical Taguchi technique. From the experiments it was seen that the most important control factor for both the pore size and the porous area is the amount of the foaming agent added, followed by temperature and stirring speed. Furthermore, the statistical significance of these manufacturing parameters on the response was also investigated by performing analysis of variance (ANOVA) statistical method.


Author(s):  
Farid Triawan ◽  
Geraldy Cahya Denatra ◽  
Djati Wibowo Djamari

The study of a thin-walled column structure has gained much attention due to its potential in many engineering applications, such as the crash box of a car. A thin-walled square column usually exhibits high initial peak force, which may become very dangerous to the driver or passenger. To address this issue, introducing some shape patterns, e.g., origami folding pattern, to the column may become a solution. The present work investigates the compressive properties and behavior of a square box column structure which adopts the Miura origami folding pattern. Several test pieces of single-cell Miura origami column with varying folding angle and layer height are fabricated by a 3D printer. The filament is made of Polylactic Acid (PLA), which is a brittle material. Then, compression tests are carried out to understand its compressive mechanical properties and behavior. The results show that introducing a Miura origami pattern to form a thin-walled square column can dramatically lower down the initial peak stress by 96.82% and, at the same time, increase its ductility, which eventually improves the energy absorption capacity by 61.68% despite the brittle fracture behavior.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
S. Talebi ◽  
R. Hedayati ◽  
M. Sadighi

AbstractClosed-cell metal foams are cellular solids that show unique properties such as high strength to weight ratio, high energy absorption capacity, and low thermal conductivity. Due to being computation and cost effective, modeling the behavior of closed-cell foams using regular unit cells has attracted a lot of attention in this regard. Recent developments in additive manufacturing techniques which have made the production of rationally designed porous structures feasible has also contributed to recent increasing interest in studying the mechanical behavior of regular lattice structures. In this study, five different topologies namely Kelvin, Weaire–Phelan, rhombicuboctahedron, octahedral, and truncated cube are considered for constructing lattice structures. The effects of foam density and impact velocity on the stress–strain curves, first peak stress, and energy absorption capacity are investigated. The results showed that unit cell topology has a very significant effect on the stiffness, first peak stress, failure mode, and energy absorption capacity. Among all the unit cell types, the Kelvin unit cell demonstrated the most similar behavior to experimental test results. The Weaire–Phelan unit cell, while showing promising results in low and medium densities, demonstrated unstable behavior at high impact velocity. The lattice structures with high fractions of vertical walls (truncated cube and rhombicuboctahedron) showed higher stiffness and first peak stress values as compared to lattice structures with high ratio of oblique walls (Weaire–Phelan and Kelvin). However, as for the energy absorption capacity, other factors were important. The lattice structures with high cell wall surface area had higher energy absorption capacities as compared to lattice structures with low surface area. The results of this study are not only beneficial in determining the proper unit cell type in numerical modeling of dynamic behavior of closed-cell foams, but they are also advantageous in studying the dynamic behavior of additively manufactured lattice structures with different topologies.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 249
Author(s):  
Przemysław Rumianek ◽  
Tomasz Dobosz ◽  
Radosław Nowak ◽  
Piotr Dziewit ◽  
Andrzej Aromiński

Closed-cell expanded polypropylene (EPP) foam is commonly used in car bumpers for the purpose of absorbing energy impacts. Characterization of the foam’s mechanical properties at varying strain rates is essential for selecting the proper material used as a protective structure in dynamic loading application. The aim of the study was to investigate the influence of loading strain rate, material density, and microstructure on compressive strength and energy absorption capacity for closed-cell polymeric foams. We performed quasi-static compressive strength tests with strain rates in the range of 0.2 to 25 mm/s, using a hydraulically controlled material testing system (MTS) for different foam densities in the range 20 g/dm3 to 220 g/dm3. The above tests were carried out as numerical simulation using ABAQUS software. The verification of the properties was carried out on the basis of experimental tests and simulations performed using the finite element method. The method of modelling the structure of the tested sample has an impact on the stress values. Experimental tests were performed for various loads and at various initial temperatures of the tested sample. We found that increasing both the strain rate of loading and foam density raised the compressive strength and energy absorption capacity. Increasing the ambient and tested sample temperature caused a decrease in compressive strength and energy absorption capacity. For the same foam density, differences in foam microstructures were causing differences in strength and energy absorption capacity when testing at the same loading strain rate. To sum up, tuning the microstructure of foams could be used to acquire desired global materials properties. Precise material description extends the possibility of using EPP foams in various applications.


2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


2010 ◽  
Vol 638-642 ◽  
pp. 61-66 ◽  
Author(s):  
Joachim Baumeister

Aluminium foams produced according to the powder metallurgical/foaming agent process are currently being used in several industrial sectors, such as automotive, rail transport or machine tools. Nevertheless there still is a high further application potential to be exploited. Especially in hybrid structures, e.g. in automotive structures that are locally filled with aluminium foam, great improvements regarding the energy absorption capacity and the sound absorption behaviour can be obtained. In the present paper several methods that allow for filling or local filling of hollow structures are investigated and presented. The effect of the foam filling on the energy absorption behaviour of the hybrid structure is discussed. Similar effects were also observed in compression tests on foam filled hollow profiles. The results of these investigations are presented.


2018 ◽  
Vol 22 (4) ◽  
pp. 948-961 ◽  
Author(s):  
Jinxiang Chen ◽  
Xindi Yu ◽  
Mengye Xu ◽  
Yoji Okabe ◽  
Xiaoming Zhang ◽  
...  

For the development of new types of lightweight sandwich structures, the compressive properties and strengthening mechanism of the middle-trabecular beetle elytron plate were investigated for various values of η (the ratio of the trabecular radius to the honeycomb wall length). The results are as follows: (1) When η = 0.1, the increases in the compressive strength and standard energy absorption capacity of the middle-trabecular beetle elytron plate compared with the honeycomb plate exceed those of the end-trabecular beetle elytron plate; with an increase to η = 0.15, the compressive strength remains nearly the same, the energy absorption capacity undergoes a significant further increase, and the trabeculae exhibit Φ-type failure. (2) The strengthening mechanism that gives rise to the compressive properties of the middle-trabecular beetle elytron plate is proposed as follows: the trabeculae are located at the center of the honeycomb walls, where the maximum deformations would otherwise occur; they constrain the deformation of the honeycomb walls; and the number of trabeculae in the middle-trabecular beetle elytron plate also exceeds that in the end-trabecular beetle elytron plate. (3) Middle-trabecular beetle elytron plates have the advantage of facile manufacturing, which will establish a basis for promoting the application of beetle elytron plates.


Author(s):  
D. Tankara ◽  
R. Moradi ◽  
Y. Y. Tay ◽  
H. M. Lankarani

Over the past few decades, much research work has been conducted on the development of advance crashworthy structures to increase the energy absorption of mechanical systems. Thin-walled tubes are primarily used as structural reinforcements and as energy absorbing components. The high-energy absorption characteristics of cellular foams have attracted great attention to further enhance this superior capability. In particular, nanotechnology has been utilized in the development of advanced cellular materials for the automotive and aerospace industry. The primary objective of this study is to conduct a parametric study using experimental and finite element methods to examine and quantify the performances of thin-walled tube when filled with carbon nano particulates. To accomplish this study, compression tests are carried out to obtain the load-deflection curves of the nano-foams when subjected to different weight percentages of carbon nano fibers. Next, the specific energy absorbed and the collapse mechanism of nano foam filled thin-walled tubes are analyzed and compared with the empty ones. Finally, an illustrative study on the use of nano foams for vehicular applications is presented by using a vehicle bumper numerical model. The carbon nano foam is installed into the cavity of the bumper model and a full-frontal crash simulation is performed. Overall, this study has shown that the energy absorption capacity of thin-walled structures can be significantly enhanced with the use of carbon nano foams.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2235
Author(s):  
Rahib A. Khan ◽  
Elsadig Mahdi ◽  
John J. Cabibihan

In this study, glass fibre reinforced (GFRP) polyvinyl chloride (PVC) tubes were subjected to quasi-static axial compression tests to determine their crashworthiness performance. To this end, this study employed GFRP/PVC tubes with four different fibre orientations, 45°, 55°, 65° and 90°. A five-axis filament winding machine was used to fabricate the tubes. The results show that there was a considerable increase in all crashworthiness characteristics due to GFRP reinforcement. For the GFRP/PVC composite tubes of different fibre orientations, the load-bearing capacity, crush force efficiency and energy absorption capability generally improve with increasing fibre orientation. The GFRP/PVC 45° specimen was a notable exception as it exhibited the best specific energy absorption capacity and a crushing force efficiency that was only slightly less than for the GFRP/PVC 90° specimen.


Sign in / Sign up

Export Citation Format

Share Document