Mercerization Treatment Conditions Effects on Kenaf Fiber Bundles Mean Diameter Variability

2013 ◽  
Vol 315 ◽  
pp. 670-674 ◽  
Author(s):  
Mohd Yussni Hashim ◽  
Norazlina Ahmad ◽  
Mohd Nazrul Roslan ◽  
Saparudin Ariffin

The interest in utilizing natural fiber as reinforce in polymer composites has increased in recent years due to their advantages like availability, cheap, renewable, lightweight, and biodegradable. However, the main challenge of natural fiber to be used as reinforcement in polymer is their hydrophobic nature. One of the solutions is via chemical modification like mercerization treatment. In this study, the effect of alkali concentrations at 2 and 10 w/v %; and soaking temperature at 30°C and 80°C on a kenaf fiber bundles mean diameter was investigated. Untreated kenaf fiber was used as a control unit. Kenaf fiber diameter was measured using a Leica video analyzer. Microstructure change of kenaf fiber before and after mercerization treatment conditions was identified using JOEL scanning electron microscopy (SEM). Finally, an interaction of alkali treatment conditions on kenaf fiber bundles mean diameter value was statistically analyzed using a commercially available statistical software package. The results showed that kenaf fiber bundle mean diameter was reduced by 30.12% to 42.92% after mercerization treatment. From analysis of variance, the main effect of alkali concentration value was 6.075 and the temperature value was 1.135. The main effect plots reveal that alkali concentration had a higher impact on mean diameter changes compared to soaking temperature factor.

2014 ◽  
Vol 660 ◽  
pp. 285-289 ◽  
Author(s):  
Mohd Yussni Hashim ◽  
Mohd Nazrul Roslan ◽  
Shahruddin Mahzan ◽  
Mohd Zin ◽  
Saparudin Ariffin

The increase of environmental issues awareness has accelerated the utilization of renewable resources like plant fiber to be used as reinforced material in polymer composite. However, there are significant problems of compatibility between the fiber and the matrix due to weakness in the interfacial adhesion of the natural fiber with the synthetic matrices. One of the solutions to overcome this problem is using chemical modification like alkali treatment. In this study, the impact of alkali treatment conditions on short randomly oriented kenaf fiber reinforced polyester matrix composite tensile strength was investigated. The experimental design setting was based on 2 level factorial experiments. Two parameters were selected during alkali treatment process which are kenaf fiber immersion duration (at 30 minute and 480 minute) and alkali solution temperature (at 40°C and 80°C). Alkali concentration was fixed at 2% (w/v) and the kenaf polyester volume fraction ratio was 10:90. The composite specimens were tested to determine the tensile properties according to ASTM D638-10 Type I. JOEL scanning electron microscopy (SEM) was used to study the microstructure of the material. The result showed that alkali treatment conditions setting do have the impact on tensile strength of short randomly oriented kenaf polyester composite. The interaction factors between immersion time and temperature was found to have prominent factors to the tensile strength of composite followed by the immersion time factor.


2013 ◽  
Vol 315 ◽  
pp. 443-447 ◽  
Author(s):  
S.K.A. Saferi ◽  
Y. Yusof

As demand for clean and healthy environment, people make many alternate solutions to save the environment. To save trees and overcome landfill of waste material and waste disposal by burning activities issues (cause to losing energy and increase pollution), people nowadays take recycling as a recovery. Recycling waste paper into new product increased over the years. Shortage of wood supply required new sources of natural fiber for papermaking industry. Many researchers have studied new sources of natural fibers from non wood materials, such as oil palm residues, kenaf (Hibiscus Cannabinus), pineapple leaf, banana, and coconut fiber. Kenaf is choose as reinforcement agent for recycled waste paper to maximize the use of kenaf in industry application due its wide range of advantages where pineapple leaf are choose as reinforcement agent because abundantly of these material in Malaysia. Reinforcement of natural fiber into waste paper during recycling process expected to increased strength properties of final product. To understand the right and suitable processing method for kenaf fiber and pineapple leaf leaves previous work from other researchers are studied to investigate pulping procedure of natural fiber and its effect on mechanical strength.


Blood ◽  
1987 ◽  
Vol 69 (4) ◽  
pp. 1073-1081 ◽  
Author(s):  
MW Mosesson ◽  
JP DiOrio ◽  
MF Muller ◽  
JR Shainoff ◽  
KR Siebenlist ◽  
...  

Release of fibrinopeptide B from fibrinogen by copperhead venom procoagulant enzyme results in a form of fibrin (beta-fibrin) with weaker self-aggregation characteristics than the normal product (alpha beta-fibrin) produced by release of fibrinopeptides A (FPA) and B (FPB) by thrombin. We investigated the ultrastructure of these two types of fibrin as well as that of beta-fibrin prepared from fibrinogen Metz (A alpha 16 Arg----Cys), a homozygous dysfibrinogenemic mutant that does not release FPA. At 14 degrees C and physiologic solvent conditions (0.15 mol/L of NaCl, 0.015 mol/L of Tris buffer pH 7.4), the turbidity (350 nm) of rapidly polymerizing alpha beta-fibrin (thrombin 1 to 2 U/mL) plateaued in less than 6 min and formed a “coarse” matrix consisting of anastomosing fiber bundles (mean diameter 92 nm). More slowly polymerizing alpha beta-fibrin (thrombin 0.01 and 0.001 U/mL) surpassed this turbidity after greater than or equal to 60 minutes and concomitantly developed a network of thicker fiber bundles (mean diameters 118 and 186 nm, respectively). Such matrices also contained networks of highly branched, twisting, “fine” fibrils (fiber diameters 7 to 30 nm) that are usually characteristic of matrices formed at high ionic strength and pH. Slowly polymerizing beta-fibrin, like slowly polymerizing alpha beta-fibrin, displayed considerable quantities of fine matrix in addition to an underlying thick cable network (mean fiber diameter 135 nm), whereas rapidly polymerizing beta-fibrin monomer was comprised almost exclusively of wide, poorly anastomosed, striated cables (mean diameter 212 nm). Metz beta-fibrin clots were more fragile than those of normal beta-fibrin and were comprised almost entirely of a fine network. Metz fibrin could be induced, however, to form thick fiber bundles (mean diameter 76 nm) in the presence of albumin at a concentration (500 mumol/L) in the physiologic range and resembled a Metz plasma fibrin clot in that regard. The diminished capacity of Metz beta-fibrin to form thick fiber bundles may be due to impaired use or occupancy of a polymerization site exposed by FPB release. Our results indicate that twisting fibrils are an inherent structural feature of all forms of assembling fibrin, and suggest that mature beta-fibrin or alpha beta-fibrin clots develop from networks of thin fibrils that have the ability to coalesce to form thicker fiber bundles.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1643 ◽  
Author(s):  
Nabilah Afiqah Mohd Radzuan ◽  
Dulina Tholibon ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Che Hassan Che Haron

Automotive parts, including dashboards and trunk covers, are now fabricated through a compression-molding process in order to produce lightweight products and optimize fuel consumption. However, their mechanical strength is not compromised to avoid safety issues. Therefore, this study investigates kenaf-fiber-reinforced polypropylene composites using a simple combing approach to unidirectionally align kenaf fibers at 0°. The kenaf composite was found to withstand a maximal temperature of 120 °C. The tensile and flexural strengths of the aligned kenaf composites (50 and 90 MPa, respectively) were three times higher than those of the commercialized Product T (between 39 and 30.5 MPa, respectively) at a temperature range of 90 to 120 °C. These findings clearly showed that the mechanical properties of aligned kenaf fibers fabricated through the combing technique were able to withstand high operating temperatures (120 °C), and could be used as an alternative to other commercial natural-fiber products.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2578
Author(s):  
Junghoon Kim ◽  
Donghwan Cho

Waste Expanded polypropylene (EPP) was utilized as recycled matrix for kenaf fiber-reinforced polypropylene (PP) composites produced using chopped kenaf fibers and crushed EPP waste. The flexural properties, impact strength, and heat deflection temperature (HDT) of kenaf fiber/PP composites were highly enhanced by using waste EPP, compared to those by using virgin PP. The flexural modulus and strength of the composites with waste EPP were 98% and 55% higher than those with virgin PP at the same kenaf contents, respectively. The Izod impact strength and HDT were 31% and 12% higher with waste EPP than with virgin PP, respectively. The present study indicates that waste EPP would be feasible as recycled matrix for replacing conventional PP matrix in natural fiber composites.


2014 ◽  
Vol 575 ◽  
pp. 46-49 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan

Natural fiber composites are getting much attention by researchers and industries. Natural fiber composites face the problem of incompatibility between fibers and polymers. Alkali treatment is the most common treatment for natural fiber composites. In this work, short “Kenaf (Hibiscus Cannabinus) Fiber” (KF) reinforced “Themoplastic ‎Polyurethane (TPU)” was prepared using Haake Polydrive R600 ‎internal mixer. After mixing, sheets for specimen cutting were prepared by compression molding. The aim of this work is to study the effect of alkali fiber treatment on stress-strain behavior of TPU/KF composites. Different alkali concentration was used, namely; 2, 4 and 6% NaOH. Tensile stress and strain were deteriorated with increase in NaOH concentration, while modulus increased slightly.


2018 ◽  
Vol 250 ◽  
pp. 05007
Author(s):  
Norazura Mizal Azzmi ◽  
Jamaludin Mohamad Yatim ◽  
Hazlan Abdul Hamid ◽  
Azmahani Abdul Aziz ◽  
Adole Michael Adole

The main objective of the experimental work is to identify the mechanical properties of Kenaf Fiber incorporate with Ordinary Portland Cement (OPC) and Pulverised Fuel Ash (PFA) in the mix proportions of concrete. Kenaf Fibrous Concrete (KFC) and Kenaf Fibrous Pulverised Fuel Ash Concrete (KFPC) will be measured on physical and mechanical properties in order to investigate the suitability of this natural fiber as a composite material. A comparison of properties between these two composites will determine the density, workability, compressive, tensile, and flexural strength of the concrete. Eight different mixes with varying percentage of Kenaf fiber were prepared with 30N/mm2 strength at 28days ,56 days and 90 days. Short fiber with 25mm and 50mm length were randomly distribute in composite to enhance the tensile and durability. PFA was obtained by the process of burning in the Power Station Coal Ash at Tanjung Bin, Johor. The unburning powder from the process is called as a PFA generally suitable for cement replacement in the concrete mix. The pozzolanic reaction will improve the adhesion of cement gel, hence increased the properties of concrete in a long-term strength development. The result shows that the inclusion of Kenaf fiber improve tensile strength of composite, furthermore the 25% PFA mix increase the durability of concrete.


2013 ◽  
Vol 748 ◽  
pp. 201-205
Author(s):  
Abd Aziz Noor Zuhaira ◽  
Rahmah Mohamed

In this research, rice husk and kenaf fiber were compounded with calcium carbonate (CaCO3)/high density polyethylene (HDPE) composite.Different loadings of up to 30 parts of 50 mesh sizes of rice husk particulate and kenaf fiber were compounded using twin-screw extruder with fixed 30 parts of CaCO3 fillerto produce hybrid composites of rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE.Compounded hybrid composites were prepared and tested for thermal properties. The thermal stability of the components was examined by thermogravimetricanalysis (TGA) and differential scanning calorimetric (DSC). The DSC results showed a slightly changes in melting temperature (Tm), crystallization temperature (Tc) and the degree of crystallinity (Xc) with addition of natural fiber. TGA indicates thermal stability of hybrid composite filled with kenaf or rice husk is better than unfilledCaCO3/HDPE composite.


In day today life, the awareness to the public along with the ease in the fabrication of polymers, has let to the frequent polymer useage. Few developing industries have started using the materials that are renewable. In the present work, the mechanical behavior of short un-treated and treated (KmNO4 ) kenaf fiber reinforced epoxy based composites was investigated. Fabrication of composite materials were carried out with volume percentage (10 %, 20 %, 30%) of treated and un treated kenaf fibers. The polymer used as matrix was epoxy resin. The composite was fabricated by using hand layup method. The various fiber loading was performed and their properties studied. The mechanical strength like tensile, flexural and impact of the composite was analysed. The effect of treatment had showed improvement in the composite properties. It was found that KmNO4 treatment and kenaf fiber loading has enhanced the synergetical effects on the composite. These chemically surface modified composites with natural fiber reinforcement can have a chief role in the development of structural component parts. These materials may be used for light weight applications, especially in automobile sector and structural components.


Author(s):  
Kannan Rassiah ◽  
Aidy Ali

There are many studies has been done on the natural fibers of cellulose contents as a reinforcing material. Yet, the main challenge in the research of natural fiber is the poor compatibility. In this study, the surface modification techniques were performed on granular size rice husk (RH) such as untreated, boiled and sodium hydroxide (NaOH) treated reinforced polypropylene (PP) was consolidated to improve the mechanical properties. An internal mixer machine is set for four different composites compositions and the samples produced by hot press machine. The specimens were analyzed by different techniques such as hardness test, impact test, tensile test and scanning electron microscopy (SEM). This study shown that, the presence of NaOH indicates higher young modulus and hardness test value compared to boiled treated and untreated RH. While for the impact strength and tensile strength value shows untreated, boiled treated and NaOH treated PP/RH composite decreased when fiber loading increased. The morphological analysis was conducted to determine the effects of natural fiber bonding between the matrix materials after boiling and NaOH treatments for mechanical testing broken specimens.


Sign in / Sign up

Export Citation Format

Share Document