Characterization of ZnxCd1-xO Nanorods for PV Applications

2013 ◽  
Vol 372 ◽  
pp. 123-127
Author(s):  
Umer Mushtaq ◽  
Souad. A.M. Al-Bat’h ◽  
Raihan Othman

This paper describes the growth of ZnxCd1-xO nanorods (NRs) by a single step electrodeposition process. Thin films of polycrystalline nature with cadmium and zinc concentration changing from 10% - 90% were electrodeposited onto ITO conductive glass substrates. XRD analysis confirms a hexagonal wurtzite structure having grain size 57.2 nm. From the FESEM analysis, the synthesized ZnxCd1-xO nanorods have uniform hexagonal crystallographic planes, and their diameters are about 100 nm. Remarkably, the ultra-violet (UV) near-band-edge (NBE) emission was red-shifted from 2.75 eV to 3.02 eV due to the direct modulation of band gap caused by Zn/Cd substitution, revealed by UV visible spectroscopy. Finally, ZnCdO thin film deposited on ITO glass substrate is used as one electrode in photovoltaic cells to produce energy by absorbing the energy from the sun, this single junction cells have been put forward as a potential low-cost alternative to the widely used solar cells.

Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


2021 ◽  
Author(s):  
Raji P ◽  
K Balachandra Kumar

Abstract Ti - doped ZnO (TixZn1-xO x= 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co - precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV-Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 ​nm to 29 ​nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples.PL spectra showed a near band edge emission and visible emission.Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.


2021 ◽  
Author(s):  
Damian Onwudiwe ◽  
Opeyemi Oyewo ◽  
Oluwasayo Esther Ogunjinmi ◽  
Olusola Ojelere

Abstract In this study, ZnO, SnO2 and their composite (ZnO-SnO2) were synthesized by green route using aqueous extract of Solanum macrocarpon fruit and were used for the photo-reduction of hexavalent chromium. The synthetic route involved a two-step procedure, induced by temperature via calcination at 350 and 600 ºC. The composite was prepared by the treatment of a mixture of the precursor compounds to a temperature up to 800 ºC, and the extension of the temperature to 1000 ºC, resulted in the emergence of ZnO-SnO2-ZTO. The nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV–vis spectroscopy. The XRD studies of the binary oxides confirmed a hexagonal wurtzite structure for the ZnO and a cubic structure for the SnO2, without any change in the diffraction patterns or supplementary diffraction peaks. The morphology of the nanoparticles indicated fairly spherical shapes for the ZnO, that tend to agglomerate with increase in temperature. The SnO2 showed rectangular shapes at both temperatures of reaction, while the ZnO-SnO2 composite showed the presence of both morphologies of the component binary oxides. In the photo-enhanced degradation study, under ultra-violet light, the effect of pH (2–8), concentration of chromium(VI) (2–8 ppm), and photocatalyst dosage (25–150 mg/L) on the reduction of Cr(VI) to Cr(III) were investigated. The reduction showed higher efficiency in acidic environment than in the alkaline environment, and also with increase in photocatalyst dosage. The composite exhibited the highest photoreduction efficiency, above 90%, at the optimum condition of pH 2, 150 mg/L photocatalyst, 2 ppm chromium solution after 90 min. These low-cost and non-toxic metal oxide and their green synthesized composite have great potentials for Cr(VI) pollution clean-up from waste water.


2011 ◽  
Vol 337 ◽  
pp. 612-615
Author(s):  
Quan Sheng Liu ◽  
Xi Yan Zhang ◽  
Xiao Chun Wang ◽  
Zhao Hui Bai ◽  
Neng Li Wang ◽  
...  

Mg0.33Zn0.67Ofilms were prepared on quartz glass substrates by Sol-Gel method. Structures and optical properties of Mg0.33Zn0.67Ofilms were studied. The results of XRD analysis indicates that the Mg0.33Zn0.67Ofilm is hexagonal wurtzite structure and the lattice constants a and c are 0.3265nm and 0.5218 nm respectively. Lattice constants a and c of the Mg0.33Zn0.67O film increased because of the addition of Mg. The image of SEM shows that the Mg0.33Zn0.67O film is homogeneous and its average grain size is about 40nm. The absorption spectrum of the sample reveals that the absorption edge of Mg0.33Zn0.67O film located at 312.3nm and the corresponding forbidden band width is 3.97eV. is by three peaks ,which located at 383.9nm,442.6nm and 532.9nm respectively,constitute the luminescence spectrum of the film. The excitation peak located at 379.9nm.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3861 ◽  
Author(s):  
Yen-Lin Chu ◽  
Sheng-Joue Young ◽  
Liang-Wen Ji ◽  
I-Tseng Tang ◽  
Tung-Te Chu

In this paper, 100 nm-thick zinc oxide (ZnO) films were deposited as a seed layer on Corning glass substrates via a radio frequency (RF) magnetron sputtering technique, and vertical well-aligned Fe-doped ZnO (FZO) nanorod (NR) arrays were then grown on the seed layer-coated substrates via a low-temperature solution method. FZO NR arrays were annealed at 600 °C and characterized by using field emission scanning microscopy (FE-SEM) and X-ray diffraction spectrum (XRD) analysis. FZO NRs grew along the preferred (002) orientation with good crystal quality and hexagonal wurtzite structure. The main ultraviolet (UV) peak of 378 nm exhibited a red-shifted phenomenon with Fe-doping by photoluminescence (PL) emission. Furthermore, FZO photodetectors (PDs) based on metal–semiconductor–metal (MSM) structure were successfully manufactured through a photolithography procedure for UV detection. Results revealed that compared with pure ZnO NRs, FZO NRs exhibited a remarkable photosensitivity for UV PD applications and a fast rise/decay time. The sensitivities of prepared pure ZnO and FZO PDs were 43.1, and 471.1 for a 3 V applied bias and 380 nm UV illumination, respectively.


2014 ◽  
Vol 970 ◽  
pp. 120-123 ◽  
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Rosli Hussin ◽  
Zuhairi Ibrahim

Undoped nanocrystalline ZnO thin films were deposited onto the glass substrates via the low cost sol-gel dip coating method. The as-grown ZnO films were annealed at the temperatures ranging from 400 °C to 550 °C. The X-ray diffraction (XRD) pattern revealed that the annealed ZnO films were polycrystalline with hexagonal wurtzite structure and majority preferentially grow along (002) c-axis orientation. Atomic force microscopy (AFM) micrographs showed the improvement of RMS roughness and grain size as annealing temperature increased. The ZnO films that annealed at 500 oC exhibited the lowest resistivity value.


The using method a low temperature and low cost growth method of high quality active materials for optoelectronic devices. ZnO nanowire arrays growth on p-Si(111). The effects of thermal annealing on the optical properties of ZnO nanowires were prepared on sol-gel ZnO-seed-coated substrates. Atomic Force Microscopy (AFM) AFM and... AFM images were found at 130 °C well aligned vertically, and the well defined crystallographic planes, providing a strong evidence that the nanowire arrays orientate along the c-axis. The annealing temperature of the ZnO thin film plays an important role on the microstructure of the ZnO grains and then the growth of the ZnO nanowire arrays.From PL spectra, an evident ultraviolet near-band edge emission peak at 382 nm is observed. From (I-V) characteristic that the material behaves p-n junction diode, ideality factors >> 2.0, that was attributed to tunneling via deep levels in the forbidden gap. Impedancespectra shows the spectrum of the Impedance resistance that the curve does not represent a regular semicircle and this indicates that the structure of the material is not regulated granules but rather is in a different form which is the nanowires.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mahmoud Nabil ◽  
I. V. Perez-Quintana ◽  
M. Acosta ◽  
J. A. Mendez-Gamboa ◽  
R. Castro-Rodriguez

ZnO nanoparticles (NPs) were extracted from a commercial paste in both colloidal and precipitate forms. The Zetasizer analysis performed on the colloid showed ZnO NPs ranging from ∼30 nm to ∼100 nm. Thin films of ZnO were deposited on glass substrates by spin-coating technique from a mixture of the extracted colloid and precipitate. The scanning electron microscope (SEM) images showed uniformly arranged, mesoporous, and nanostructured ZnO particles of different shapes, with an estimated film thickness of 0.67 μm. Analysis by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD) confirmed the presence of ZnO in the films, with no impurities or remnants of other materials. The XRD analysis showed a polycrystalline nature of the films and identified a pure phase formation of the hexagonal wurtzite structure. The average crystallite size calculated from the diffraction peaks is ∼43.25 nm. The calculated crystal tensile strain is 1.954 × 10−3, which increases the crystal volume by 0.728% compared with the crystal volume of standard ZnO. The calculated crystal parameters are a = b = 3.258 Å and c = 5.217 Å. The calculated dislocation density (d) and bond length Zn–O (L) are 5.35 × 10−4 nm−2 and 2.695 Å, respectively. Ultraviolet-visible absorption spectra showed an optical band gap of ∼3.80 eV.


Open Physics ◽  
2005 ◽  
Vol 3 (3) ◽  
Author(s):  
Abdoljavad Novinrooz ◽  
Masoomeh Sharbatdaran ◽  
Hassan Noorkojouri

AbstractThin layers of tungsten trioxide have been prepared from an aqueous solution of peroxotungstic acid (PTA) using the sol-gel method. Compositional, structural and optical characteristics of WO3 coated on indium tin oxide (ITO) conductive glass substrates were studied using X-ray diffractometery (XRD), cyclic voltammetery (CV), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Monoclinic and triclinic crystalline structures for thin film and powdered WO3 were confirmed by XRD analysis. SEM micrograph of annealed samples revealed micro cracks due to a decrease in density and a contraction of layers. EDX analysis showed that 1∶2 ratio of oxygen and tungsten atoms in the prepared films is obtained at heat treatment temperatures higher than 200 °C. Furthermore, the annealed samples showed very good electrochromic behavior in cyclic voltammetery studies. Refractive index “n” and extinction coefficient “k” values were found to be reduced by increasing the wavelength and decreasing the temperature.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Qi Qin ◽  
Yunxia Guo

Polyaniline (PANI) films were synthesized on a conducting ITO glass by potentiostatic techniques to construct a low-cost counter electrode for dye-sensitized solar cell (DSSC). The compact layer, nanoparticles, nanorods- and fibrils were observed on the top of PANI films with different constant potentials by SEM. Then the conductivity test illuminated that a polyaniline film with the highest conductivity was electrodeposited at 1.0 V. Finally, the photoelectric measurement showed that the energy conversion efficiency of DSSC with the PANI electrode was increased with the potential decreasing. And the efficiency of DSSC with PANI counter electrode at 1.0 V was higher than that with Pt electrode, owing to the high surface area, high conductivity, and excellent catalytic activity of PANI electrode. Therefore, the PANI counter electrode with excellent catalytic performance is a potential substitute for platinized electrode to save cost of DSSC.


Sign in / Sign up

Export Citation Format

Share Document