Micro-Bridge Structure Design of UFPA with Highly Sensitive Pixels

2013 ◽  
Vol 404 ◽  
pp. 467-472
Author(s):  
Mao Yan Fan ◽  
Li Fang Zhang

The Micro-bridge structure pays an important role in the mechanical support, thermal isolation and electrical connection for the UFPA detector, the quality of which has a direct effect on the imaging performance of the UFPA detector. A kind of Micro-bridge pixel is provided in this paper with thick-film pixel size of 360μm×360μm and desk-type adiabatic frame support, and the analysis results by FEM show that the minor thermal conductivity G and high responsivity can be obtained.

Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 147
Author(s):  
Kristina A. Malsagova ◽  
Tatyana O. Pleshakova ◽  
Vladimir P. Popov ◽  
Igor N. Kupriyanov ◽  
Rafael A. Galiullin ◽  
...  

Gas-phase etching and optical lithography were employed for the fabrication of a silicon nanoribbon chip (Si-NR chip). The quality of the so-fabricated silicon nanoribbons (Si-NRs) was monitored by optical Raman scattering spectroscopy. It was demonstrated that the structures of the Si-NRs were virtually defect-free, meaning they could be used for highly sensitive detection of biological macromolecules. The Si-NR chips were then used for the highly sensitive nanoelectronics detection of DNA oligonucleotides (oDNAs), which represent synthetic analogs of 106a-5p microRNA (miR-106a-5p), associated with the development of autism spectrum disorders in children. The specificity of the analysis was attained by the sensitization of the Si-NR chip sur-face by covalent immobilization of oDNA probes, whose nucleotide sequence was complementary to the known sequence of miR-106a-5p. The use of the Si-NR chip was demonstrated to al-low for the rapid label-free real-time detection of oDNA at ultra-low (~10−17 M) concentrations.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Alf Inge Wang ◽  
Aleksander Aanesl. Elvemo ◽  
Vegard Gamnes

The paper presents results of a quasiexperiment where the three social classroom applications Post-It, WordCloud, and Categorizer were used in software architecture lectures. Post-It and WordCloud are applications that allow students to brainstorm or give comments related to a given topic. Categorizer is a puzzle game where the students are asked to place a number of terms in one of two correct categories. The three applications are multimodal HTML5 applications that enable students to interact in a classroom using their own digital devices, and the teacher’s laptop is used to display progress and results on the large screen. The focus of this study was to evaluate how the difference of these applications and how their integration into the lecture affected the students’ motivation, engagement, thinking, activity level, social interaction, creativity, enjoyment, attention, and learning. In addition, the study evaluated the usability and the technical quality of the applications. The results of the experiment show that the way such applications are integrated into a lecture highly affects the students’ attitude. The experiment also showed that the game-based application was on average better received among the students and that the students’ attitude was highly sensitive to the difficulty level of the game.


2021 ◽  
Author(s):  
Xiaolin Zhang ◽  
Tianyi Guan ◽  
Lei Fan ◽  
Na Wang ◽  
Li Shang ◽  
...  

2022 ◽  
pp. 152808372110569
Author(s):  
Tamara Ruiz-Calleja ◽  
Rocío Calderón-Villajos ◽  
Marilés Bonet-Aracil ◽  
Eva Bou-Belda ◽  
Jaime Gisbert-Payá ◽  
...  

Knife-coating can confer new properties on different textile substrates efficiently by integrating various compounds into the coating paste. Graphene nanoplatelets (GNP) is one of the most used elements for the functionalization of fabrics in recent years, providing electrical and thermal conductivity to fabrics, later used to develop products such as sensors or heated garments. This paper reports thermoelectrically conductive textiles fabrication through knife-coating of cellulosic fabrics with a GNP load from 0.4 to 2 wt% within an acrylic coating paste. The fabric doped with the highest GNP content reaches a temperature increase of 100°C in few seconds. Besides, it is found out that the thermographic images obtained during the electrical voltage application provide maps of irregularities in the dispersion of conductive particles of the coating and defects produced throughout their useful life. Therefore, the application of a low voltage on the coated fabrics allows fast and effective heating by Joule’s effect, whose thermographic images, in turn, can be used as structural maps to check the quality of the GNP doped coating. The temperature values and the heating rate obtained make these fabrics suitable for heating devices, anti-ice and de-ice systems, and protective equipment, which would be of great interest for industrial applications.


Author(s):  
Gonglian Dai ◽  
Meng Wang ◽  
Tianliang Zhao ◽  
Wenshuo Liu

<p>At present, Chinese high-speed railway operating mileage has exceeded 20 thousand km, and the proportion of the bridge is nearly 50%. Moreover, high-speed railway design speed is constantly improving. Therefore, controlling the deformation of the bridge structure strictly is particularly important to train speed-up as well as to ensure the smoothness of the line. This paper, based on the field test, shows the vertical and transverse absolute displacements of bridge structure by field collection. What’s more, resonance speed and dynamic coefficient of bridge were studied. The results show that: the horizontal and vertical stiffness of the bridge can meet the requirements of <b>Chinese “high-speed railway design specification” (HRDS)</b>, and the structure design can be optimized. However, the dynamic coefficient may be greater than the specification suggested value. And the simply supported beam with CRTSII ballastless track has second-order vertical resonance velocity 306km/h and third-order transverse resonance velocity 312km/h by test results, which are all coincide with the theoretical resonance velocity.</p>


RSC Advances ◽  
2017 ◽  
Vol 7 (62) ◽  
pp. 39292-39298
Author(s):  
M. Loeblein ◽  
L. Jing ◽  
M. Liu ◽  
J. J. W. Cheah ◽  
S. H. Tsang ◽  
...  

A new polymer/3D-foam-composite is presented for filling large gaps with high conformity and thermal conductivity, while rendering strong mechanical support.


2014 ◽  
Vol 915-916 ◽  
pp. 349-355
Author(s):  
Xiao Zhen Hu

Through deeply research and analysis the extruding technology of PVC crusting-foam plate, several main equipments of the production line system such as extruder power transmission system, machine barrel, screw, cooling stereotypes system and traction cutting system are designed. The drawings of all components and parts are drawn by using AutoCAD and Pro/E soft. After the production line assembled, some related experiments, measurement and analysis are completed, and the results show that the quality of PVC plates produced by our production line attained to technical level of imported products.


2012 ◽  
Vol 44 (3) ◽  
pp. 281-286
Author(s):  
A.V. Aleksandrov ◽  
V.V. Aleksandrov

This article deals with the use of computer modeling to develop technical solutions to ensure better quality of alumina-containing sinter. The simulation accounted for the influence of the feed materials on the thermal processes in the furnace. The energy balance (including thermal conductivity, heat convection and radiant heat exchange) was solved assuming steady state. A good correlation was observed for the actual and calculated temperatures of the solids and gases, with less than 15% discrepancy. Using the model of the furnace investigated the possibility of lowering the temperature of sintering by removing heat from the outside of the furnace shell. To reduce the sintering temperature to 1000 ?C length of the refractory lined steel is 5 m, the height of the lining should not exceed - 0.06 m, the required rate of cold water - 54.7 m3/h


2016 ◽  
Vol 16 (3) ◽  
pp. 157-161 ◽  
Author(s):  
M. Hrubovčáková ◽  
I. Vasková ◽  
M. Benková ◽  
M. Conev

Abstract The main bulk density representation in the molding material is opening material, refractory granular material with a particle size of 0.02 mm. It forms a shell molds and cores, and therefore in addition to activating the surface of the grain is one of the most important features angularity and particle size of grains. These last two features specify the porosity and therefore the permeability of the mixture, and thermal dilatation of tension from braking dilation, the thermal conductivity of the mixture and even largely affect the strength of molds and cores, and thus the surface quality of castings. [1] Today foundries, which use the cast iron for produce of casts, are struggling with surface defects on the casts. One of these defects are veining. They can be eliminated in several ways. Veining are foundry defects, which arise as a result of tensions generated at the interface of the mold and metal. This tension also arises due to abrupt thermal expansion of silica sand and is therefore in the development of veining on the surface of casts deal primarily influences and characteristics of the filler material – opening material in the production of iron castings.


Sign in / Sign up

Export Citation Format

Share Document