Stipulation of Conditions of CMF with Required Allocation of Tool Materials

2014 ◽  
Vol 682 ◽  
pp. 474-479 ◽  
Author(s):  
O.Y. Retyunsky ◽  
A.A. Kurilin

The existing production techniques of CMF (changeable multi-faceted plates) are not sufficient for production of tools with enhanced hardness parameters. In order to implement the production technique of composite CMF using layer by layer filling of press mold the research was conducted of the rotation speed of the press mold on the interface form of powdered materials phases. The suggested production method of composite CMF allows to enhance the hardness of cutting plates by 10–15%.

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Teunis van Manen ◽  
Shahram Janbaz ◽  
Kaspar M. B. Jansen ◽  
Amir A. Zadpoor

AbstractShape-shifting materials are a powerful tool for the fabrication of reconfigurable materials. Upon activation, not only a change in their shape but also a large shift in their material properties can be realized. As compared with the 4D printing of 2D-to-3D shape-shifting materials, the 4D printing of reconfigurable (i.e., 3D-to-3D shape-shifting) materials remains challenging. That is caused by the intrinsically 2D nature of the layer-by-layer manner of fabrication, which limits the possible shape-shifting modes of 4D printed reconfigurable materials. Here, we present a single-step production method for the fabrication and programming of 3D-to-3D shape-changing materials, which requires nothing more than a simple modification of widely available fused deposition modeling (FDM) printers. This simple modification allows the printer to print on curved surfaces. We demonstrate how this modified printer can be combined with various design strategies to achieve high levels of complexity and versatility in the 3D-to-3D shape-shifting behavior of our reconfigurable materials and devices. We showcase the potential of the proposed approach for the fabrication of deployable medical devices including deployable bifurcation stents that are otherwise extremely challenging to create.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Saad Ibrahim Yousif ◽  
Mustafa Bayram ◽  
Songul Kesen

Bulgur is enjoyed and rediscovered by many people as a stable food because of its color, flavor, aroma, texture, and nutritional and economical values. There is more than one type of bulgur overall the world according to production techniques and raw materials. The volatile compounds of bulgur have not been explored yet. In this study, Headspace Solid Phase Microextraction (HS-SPME) and Gas Chromatography–Mass Spectroscopy (GS-MS) methods were used to determine the volatile flavor compounds of bulgur (Antep type, produced from Durum wheat). Approaching studies were used and the results were optimized to determine the ideal conditions for the extraction and distinguish the compounds responsible for the flavor of bulgur. Approximately, 47 and 37 important volatile compounds were determined for Durum wheat and bulgur, respectively. The study showed that there was a great diversity of volatiles in bulgur produced using Durum wheat and Antep type production method. These can lead to a better understanding of the combination of compounds that give a unique flavor with more researches.


2022 ◽  
pp. 153-175
Author(s):  
Nuray Beköz Üllen ◽  
Gizem Karabulut

Lightweight materials were needed in many different areas, especially in order to reduce the required energy in areas such as automotive and aerospace industries. Metallic foams attract attention in lightweight material applications due to their unique properties. The pores in its structure provide advantages in many applications, both structural and functional by promising both ultra-lightweight construction, energy absorption, and damping insulation. Production techniques of metallic foams can generally be classified as liquid, solid, gas, and ionic state production according to the physical state of the metal at the beginning of the process. The production technique should be chosen according to the usage area and desired properties of the metallic foam and the suitability in terms of cost and sustainability of production. For this reason, the details of the production techniques should be known and the products that can be obtained and their properties should be understood. In this respect, this chapter emphasizes the production methods from past to present.


1998 ◽  
Vol 22 ◽  
pp. 172-174
Author(s):  
D. L. Romney ◽  
F. C. Cadario ◽  
E. Owen ◽  
A .H. Murray

Parameters from in vitro gas production techniques could have potential as predictors of dry-matter intake (DMI) and digestibility. Fermentation is usually carried out under conditions where nitrogen (N) is not limiting. Therefore where N supply is a constraint to intake and digestibility, prediction equations may be inaccurate. This study compared the use of N-free and N-rich media in an in vitro fermentation method (Theodorou et al., 1994) and studied the relationships between in vitro and in vivo parameters obtained using both media.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4342
Author(s):  
Eduardo Reverte ◽  
Monique Calvo-Dahlborg ◽  
Ulf Dahlborg ◽  
Monica Campos ◽  
Paula Alvaredo ◽  
...  

The structure of FeCoNiCrAl1.8Cu0.5 high-entropy alloys (HEA) obtained by two different routes has been studied. The selection of the composition has followed the Hume–Rothery approach in terms of number of itinerant electrons (e/a) and average atomic radius to control the formation of specific phases. The alloys were obtained either from a mixture of elemental powders or from gas-atomised powders, being consolidated in both cases by uniaxial pressing and vacuum sintering at temperatures of 1200 °C and 1300 °C. The characterization performed in the sintered samples from both types of powder includes scanning electron microscopy, X-ray diffraction, differential thermal analysis, and density measurements. It was found that the powder production techniques give similar phases content. However, the sintering at 1300 °C destroys the achieved phase stability of the samples. The phases identified by all techniques and confirmed by Thermo-Calc calculations are the following: a major Co-Ni-Al-rich (P1) BCC phase, which stays stable after 1300 °C sintering and homogenising TT treatments; a complex Cr-Fe-rich (P2) B2 type phase, which transforms into a sigma phase after the 1300 °C sintering and homogenising TT treatments; and a very minor Al-Cu-rich (P3) FCC phase, which also transforms into Domain II and Domain III phases during the heating at 1300 °C and homogenising TT treatments.


2001 ◽  
Vol 2001 ◽  
pp. 128-128
Author(s):  
J.W. Cone ◽  
A.H. van Gelder ◽  
H. Bachmann ◽  
V.A. Hindle

The nylon bag technique is the standard technique used in many feed evaluation systems for ruminants. As the rate and extent of fermentation can also be determined with the gas production technique, this technique offers a potentially good alternative. Cone et al. (1998) showed that there was a good relationship between rate of degradation determined with the nylon bag technique and rate of gas production for organic matter and NDF in grass and grass silage. The aim of this study was to determine the possibilities for estimating nylon bag characteristics and calculation of the amount of fermentable organic matter (FOM) of concentrate ingredients with gas production parameters.


Beverages ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 4
Author(s):  
Nils Rettberg ◽  
Scott Lafontaine ◽  
Christian Schubert ◽  
Johanna Dennenlöhr ◽  
Laura Knoke ◽  
...  

The sensory, volatile, and physiochemical profiles of nineteen commercial non-alcoholic pilsner-style beers produced by different production techniques were analyzed and compared with a dry-hopped non-alcoholic IPA. NABs made only with either physical dealcoholization or restricted fermentations differed significantly in chemistry and flavor. Generally, NABs produced by restricted fermentations were the most worty, thick, and sweet, whereas NABs that were physically dealcoholized had the lowest taste/aroma intensities and were the sourest, most thin, and least sweet. Interestingly, the method of dealcoholization had a minor impact on the flavor profile. The use of maltose intolerant yeast as well as the implementation of combined treatments, such as blending dealcoholized beer with beer containing alcohol, were the techniques found to produce NABs with more harmonious and multifaceted chemical and flavor profiles. NABs with increased hop aroma volatiles were the most harmonious, particularly highlighted by the NA IPA reference. Even though dry-hopped character might be atypical for pilsner-style beer, dry-hopping appears as a simple application to produce NABs with more harmonious flavor.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6902-6911
Author(s):  
Engin Sarıkaya ◽  
Hakan Demirel

In this work, a toy was developed from bleached sulphate pulp via a moulded fibre production technique. Moulded fibre products are generally used to preserve main products from damage during transportation and stow them in a particular order. This work investigated the use of moulded fibre products in daily life as final products. Bleached softwood sulphate pulp was used for the experiments to avoid the potential hygiene problems of using recycled paper for toy production. The physical properties of different degrees of refined sulphate pulp were evaluated during toy sample production. The results indicated that toys produced with bleached softwood sulphate pulp had optimum compression strength (22 kpgf) at the 35 SR° freeness level. Produced prototypes satisfied EN 71-3:2013+A1(2014) in terms of migration element limits.


Author(s):  
Yiran Yang ◽  
Lin Li

Additive manufacturing (AM), owning to the unique layer-by-layer manufacturing method and its associated advantages, has been implemented in a great number of industries. To further expand the AM applications, the current low throughput of AM system needs to be improved. Consequently, the batch production method, where multiple parts are fabricated in one batch, has gained increasing research interest. In the current state of literature, most research efforts assess the batch production approach based on its manufacturing cost saving potential. Nevertheless, environmental sustainability, serving as a critical part in AM development, is less explored. Environmental sustainability of AM batch production needs to be thoroughly investigated and assessed, due to the potential environmental impacts and human health risks that AM batch production activities might cause. This research aims to advance the state-of-the-art on environmental sustainability evaluation for AM batch production, by experimentally comparing three main environmental sustainability aspects (i.e., energy consumption, emission, and material waste) for batch production processes with different batch sizes. Based on the experimental results, the feasibility of batch production method for AM is discussed. The outcomes of this research will help evaluate the AM batch production method from an environmental sustainability standpoint, and facilitate the development of AM batch production.


1998 ◽  
Vol 22 ◽  
pp. 40-43
Author(s):  
P. Chilibroste ◽  
S. Tamminga ◽  
B. A. Williams

The nylon bag technique (NBT) has been used widely to characterize the washable (W), insoluble potentially degradable (D) and insoluble non-degradable (U) fractions of grasses (e.g. van Vuuren, 1993) and concentrates (Tammingaet al., 1990). Recently the gas production technique (GPT) has been proposed as a method to evaluate the fermentation characteristics of different foods (Theodorouet al., 1994). Both techniques have shown good correlation with dry matter intake (Khazaalet al., 1993). One of the potential advantages of GPT over NBT is the ability to differentiate fermentation patterns (Grootet al., 1996) that might be related to changes in food composition. This trial was part of a larger grazing experiment and aimed to compare GPT and NBT when applied to samples of ryegrass at different ages. A specific objective was to determine whether or not GPT could extract more information concerning the fermentation patterns of different ryegrass fractions and how these patterns changed as a result of plant maturity.


Sign in / Sign up

Export Citation Format

Share Document