Development and Testing of Intumescent Fire Retardant Coating on Various Structural Geometries

2014 ◽  
Vol 699 ◽  
pp. 360-365 ◽  
Author(s):  
Sami Ullah ◽  
Faiz Ahmad ◽  
Anildav Singh

Materials are prone to fire and in modern construction their protection from fire is required. In any structure, various joints such as T-joint, I-beam and elbows are used. The geometry of the component has significant role in protection of structure. A weak joint may lead to failure of main structure. In order to meet these challenges, Intumescent fire retardant coating (IFRC) were developed and tested on various structural geometries such as T-joints, elbows, I-beams and pipe. The control coating formulation (IFC-C) was developed from main ingredients; Ammonium Polyphosphate (APP), expandable Graphite (EG), Melamine (Mel), Boric Acid (BA) mixed with bisphenol A epoxy resin and polyamide hardener. Another set of formulations containing various percentage of aluminium Tri-Hydrate (ATH). Fire test results of ATH based formulation showed that I-beam geometry showed the high expansion of 19 mm. T-joint showed the average surface temperature of 55°C after one hour of Bunsen burner test. The X-ray Diffraction (XRD) showed the presence of boron oxide, boron phosphate, sassolite and aluminium oxide in IFC-ATH5 residual char. The 5wt% ATH filler in IFC-C enhanced the fire protection performance of intumescent fire retardant coating formulation.

2014 ◽  
Vol 970 ◽  
pp. 328-331 ◽  
Author(s):  
Muhammad Zia-ul-Mustafa ◽  
Faiz Ahmad ◽  
Puteri S. M. Megat-Yusoff ◽  
Hammad Aziz

Various types of intumescent fire retardant coatings (IFRCs) have been used to protect the substrates exposed to fire. In current study, high temperature filler Wollastonite (W) filler was used to improve fire performance of intumescent fire retardant coating. The basic ingredients of the coating were ammonium poly-phosphate (APP) as acid source, expandable graphite (EG) as carbon source, melamine (MEL) as blowing agent in epoxy binder, boric acid as additive and hardener as curing agent. In this study a range of coating formulations were developed by using different weight percentages of Wollastonite filler. The coated steel substrate samples were tested for fire performance using Bunsen burner and char expansion was measured using furnace fire test. Composition of the char was determined by X-ray diffraction (XRD) technique. The char morphology was studied using field emission scanning electron microscopy (FESEM). Results showed that Intumescent coating with addition of Wollastonite filler enhanced anti-oxidation of the char. Presence of phosphorus, calcium and silicon in char layer further improved the thermal stability of char.


Author(s):  
Alireza Zaheri ◽  
Mohammadreza Farahani ◽  
Alireza Sadeghi ◽  
Naser Souri

The bonding strength, and microstructures of Cu and Al couples using metallic powders as interlayer during transient liquid phase bonding (TLP bonding) were investigated. The interfacial morphologies and microstructures were studied by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, and X-ray diffraction. First, to explore the optimum bonding time and temperature, nine samples were bonded without interlayers in a vacuum condition. Mechanical test results indicated that bonding at 560°C in 20 min returns the highest bond strength (84% of Al). This bonding condition was used to join ten samples with powder interlayers. Powders were prepared by mixing different combinations of Cu, Al (+Fe nanoparticles) and Zn. In the bonding zone, different Cu9Al4, CuAl, and CuAl2 intermetallic co-precipitate. The strongest bonding is formed in the sample with the 70Al (+Fe)-30Cu powder interlayer. Powder interlayers present thinner and more uniform intermetallic layers at the joint interface.


2020 ◽  
Vol 54 (30) ◽  
pp. 4921-4928
Author(s):  
A Mohamed ◽  
MM Mohammed ◽  
AF Ibrahim ◽  
Omyma A El-Kady

In this study, copper powder was reinforced with different weight percentages of Al2O3 particles (0, 5, 10, and 15 wt.% Al2O3 coated Ag) to produce Cu-Al2O3 composites by mechanical alloying and uniaxial cold pressing/sintering route. Electro-less deposition was used to coat Al2O3 particles with Ag. The microstructure of the consolidated samples was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) elemental mapping. The porosity, microhardness, and wear behavior of the consolidated samples were also investigated as a function of Al2O3 content. The EDX mapping images reveal that the Al2O3 reinforcement particles were homogeneously distributed into the Cu matrix. Microstructural analysis shows that the addition of Al2O3 coated Ag particles improves density of the composites coating. SEM micrographs result shows that slight porosities exist in the composites produced. Furthermore, the average hardness of the composite coatings varies from 72.3 to 187.6 HV as Al2O3 content increases from 0 to 15 wt.%. The wear test results showed that the composite with higher Al2O3 content 15 wt.% showed the best wear resistance.


2019 ◽  
Vol 57 ◽  
pp. 17-30
Author(s):  
Christopher Narh ◽  
Charles Frimpong ◽  
Qu Fu Wei

In this research, unzipped sulfanilic acid inspired hydrophobic peptide tube was synthesis by increasing the polarity of sulfanilic acid through nucleophilic attachment of aniline which then provided two reactive sites at the S-terminus. These two sites were then attached with the N-terminal of valine and alanine respectively at an intensity of 1000-1600 of 11 2θ (°). Through π-π stacking at the side chains, the opened ended peptide was linearly arranged to form the unzipped tube. Fourier transform infrared spectroscopy (FTIR) confirm the amine bond formation whiles X-ray diffraction test results confirmed D-spacing 7.36 and 4.44 corresponding 2θ (°)12 and 19.97 respectively whiles the torsion angles (Ø2) conformations was between-150.5°and-169.2° and-2 between-129.0° and-150.6°. The Thermogravimetric analysis result showed an increase in the rigidity of the bond with an increasing intensity. Finally, Differential scanning calorimetry (DSC) test was carried out to confirm the crystallinity of the structure. Keywords: Sulfanilic acid, hydrophobic Peptide, Unzipped tubes, Nanomaterial


1988 ◽  
Vol 32 ◽  
pp. 311-321 ◽  
Author(s):  
R.A. Larsen ◽  
T.F. McNulty ◽  
R.P. Goehner ◽  
K.R. Crystal

AbstractThe use of conventional θ/2θ diffraction methods for the characterization of polycrystalline thin films is not in general a satisfactory technique due to the relatively deep penetration of x-ray photons in most materials. Glancing incidence diffraction (GID) can compensate for the penetration problems inherent in the θ/2θ geometry. Parallel beam geometry has been developed in conjunction with GID to eliminate the focusing aberrations encountered when performing these types of measurements. During the past yearwe developed a parallel beam attachment which we have successfully configured to a number of systems.


Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1122
Author(s):  
Zdeněk Klika ◽  
Marta Valášková ◽  
Lucie Bartoňová ◽  
Petra Maierová

An innovative chemical quantitative mineral analysis (CQMA) was successfully tested on a cordierite-based clay ceramic sample to quantify crystalline and amorphous components. The accuracy of this method was demonstrated on an added module to the CQMA program that used oxide formulas of amorphous phases obtained by energy dispersive X-ray spectroscopy (EDS) microprobe chemical analysis. This CQMA method was tested for three variants calculated using chemical analysis, i.e., X-ray diffraction (XRD) identification of crystalline (cordierite and enstatite) and amorphous phases by scanning electron microscopy (SEM)/EDS texture and microanalyses. The test results from CQMA suggest their application possibilities as well as the limits of their utilization.


2018 ◽  
Vol 930 ◽  
pp. 562-567
Author(s):  
Rodolfo Luiz Bezerra de Araújo Medeiros ◽  
Maria de Fátima Dantas e Silva ◽  
Rodrigo César Santiago ◽  
Gilvan Pereira de Figueredo ◽  
Heloísa Pimenta de Macedo ◽  
...  

The aim of this work is to use a residue from shale gas production, known as retorted shale (RS), as an alternative material for processes of sulfur adsorptive desulfurization in liquid fuels such as gasoline or diesel. Therefore, retorted shale samples were chemically modified. Two methods were applied: acid leaching and impregnation. The first method (RS-HCl) was an acid treatment with HCl solution (3M) in proportion of 1.5: 10. The second method (RS-Fe) was a wet impregnation of 20%wt. of Fe followed by calcination at 700°C for 2 h. The adsorbents were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The adsorption tests were performed using a solution of n-heptane and thiophene to simulate a fuel with an initial concentration of 500 ppm of sulfur. The results showed that both methods significantly altered the structure of the retorted shale, mainly the amount of Fe2O3. The adsorption test results indicated that the adsorbents prepared can remove up to 90% of the sulfur present.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940032 ◽  
Author(s):  
Pengfei Zhu ◽  
Guoqing Gou ◽  
Zhaofu Li ◽  
Minhao Zhu ◽  
Zhongyin Zhu ◽  
...  

The welding residual stress has different effects on the mechanical properties of aluminum alloy welded joints, such as size stability, fatigue strength and stress corrosion cracking. Therefore, it is very important to evaluate the welding residual stress accurately. In this paper, the residual stress of A7N01 aluminum alloy welded joints was measured by X-ray diffraction. In contrast to the traditional method, the cos[Formula: see text] method was used in this paper, the results were compared with those obtained by the conventional [Formula: see text] method. In addition, the influence of oscillation unit on the test results of the cos[Formula: see text] method was studied.


2012 ◽  
Vol 185 ◽  
pp. 90-93 ◽  
Author(s):  
Sami Ullah ◽  
Faiz Ahmad

In the intumescent fire retardant (IFR) coating char thickness and its strength play a vital role to protect the base steel structure from the fire. The IFR coating contains expandable graphite (EG), ammonium polyphosphate (APP), melamine, boric acid, bisphenol, epoxy resin BE-188 (BPA) which is used as a binder with ACR hardener H-2310 polyamide amine and multi wall carbon nanotubes (MWCNTs). A range of different formations were prepared to study the heat shielding effect and char expansion after fire test. The intumescent coating was tested at 800°C for one hour in the furnace and found to be very stable and well bonded with the steel substrate. The characterization was done by using Thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) after fire test. The results confirmed that MWCNTs enhanced the char resistant of IFR coating on steel substrate after fire test. Keywords: Intumescent fire retardant coating, Expandable Graphite, Multiwall Carbonnano tubes, FESEM and TGA.


2020 ◽  
Vol 15 (2) ◽  
pp. 197-203
Author(s):  
Yujie Sun ◽  
Xia Yang ◽  
Yue Huang ◽  
Jianquan Li ◽  
Xinghua Cen ◽  
...  

In this study, we investigated the influence of MnTiO3 nanoparticles additive on hydrogen released performance of NaAlH4 for the first time. The MnTiO3 nanoparticles were successfully synthesized using conventional solid-state ceramic route. It was found that the hydrogen released performance of NaAlH4 can be significantly improved by the addition of MnTiO3 nanoparticles. Meantime, the composite of NaAlH4 doped 5 wt% MnTiO3 possessed excellent dehydrogenation properties, the onset dehydrogenation temperature was only 70.6 °C, reduced by about 105 °C in comparison with the pristine NaAlH4, and approximately 5.01 wt% of hydrogen could be released from composite with temperature heated to 220 °C. The isothermal dehydrogenation test results indicated that the amount of hydrogen released by NaAlH4-5 wt% MnTiO3 composite could reach 4.4 wt% under 200 °C within 25 min. According to the analysis of X-ray diffraction, the presence of MnTiO3 nanoparticles did not alter the overall dehydrogenation pathway of NaAlH4, and the Al3 Ti phases formed after dehydrogenation, which enhanced hydrogen desorption performances of NaAlH4 .


Sign in / Sign up

Export Citation Format

Share Document