Improving Biogas Quality through Circulated Water Scrubbing Method

2015 ◽  
Vol 776 ◽  
pp. 443-448 ◽  
Author(s):  
Hendry Sakke Tira ◽  
Yesung Allo Padang ◽  
Mirmanto ◽  
Hendriono

The dependence of human being on fossil fuels has decreased significantly the conventional energy resources. To overcome this problem it is required alternative substitute fuels which are cheap and accessible which biogas is one of the fuels. Nevertheless, the use of biogas has not yet been maximized because of the low calorific value which is produced from the process without purification. The circulated water absorption method is one mean of effective biogas purification. Under this method it is expected to increase the level of methane (CH4) and to reduce both the level of carbon dioxide (CO2) and hydrogen sulfide (H2S). In order to obtain the aim, the research was carried out under variations of water and biogas volumetric flow rate. The results show that the highest quality of biogas produced was under the variation of water volumetric flow rate of 15 lt/min with biogas volumetric flow rate of 1 lt/min which increased the level of methane (CH4) from 59.36 % to 62.8 % and decreased the carbon dioxide (CO2) content from 33.53 % to 26.8 %, and hydrogen sulfide (H2S) from 208.33 to 86 ppm. Lower biogas and water volumetric rates allowed longer contact between biogas molecule and absorbent. This resulted in an opportunity for absorbent more active to dissolve carbon dioxide and hydrogen sulfide in biogas. These compounds then flowed outward of the scrubbing unit along with the absorbent. The research proved that the raw biogas purification by circulated water scrubbing method was an effective mean in enhancing the quality of biogas.

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Rudy Sutanto ◽  
Ida Bagus Alit ◽  
Gilang Rezeki

Human dependence on fossil fuels cause the reserves of energy resources is increasingly reduced. To overcome these problems is urgently needed alternative fuels which are cheap and readily available, one alternative fuel is biogas. However, the use of biogas not yet maximized because of low heating value of the biogas produced from the process without purification. Premium fueled vehicle proved to be turned on using biogas. Tests conducted on the variation of the engine rotation of 1500, 2500, 3500, and 4500 rpm and variations of biogas that has been purified using the paste pumice stone with a variation of the flow rate of purification of  2 liters / minute, 6 liter / minute, and 10 liters / minute. In this test should be able to get the best performance in terms of fineness engine rotation (force braking and fuel consumption). From the test results with the variation of rotation and flow rate variations purification of biogas obtained performance of the motor fuel of the best on rotation 4500 rpm with a flow rate of fuel biogas purification of 2 liters / minute produces a torque value of 6.98 Nm and an effective power of 3288.09 Watt while the value SFCE by 0.33 Liter / Jam.Watt. This proves that, biogas purification using paste pumice stone is able to improve quality of biogas.


KnE Energy ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 126 ◽  
Author(s):  
Mufidatul Islamiyah ◽  
Totok Soehartanto ◽  
Ridho Hantoro ◽  
Arif Abdurrahman

<p>Purifying biogas from CO2 (carbon dioxide) and H2S (hydrogen sulfide) needs to be done to improve the quality of the biogas in the fuel. The presence of H2S in biogas can cause corrosive to the equipment, in addition to this, H2S is also dangerous for human and animal health. CO2 contained in Biogas is also an impurity that can cause corrosive beside H2S so the contained in biogas is also an impurity that can cause corrosive, so the purification process needs to be done in order to qualify biogas as natural gas which environmentally friendly and safe for health. The basic ingredient of biogas purification using water scrubbers base ingredients are water, which flowed pressurized biogas purification column from the bottom, of the column in order to reduce CO2 and H2S gases. The result of purification by using this method was that the levels of H2S in biogas reduced by 32.8 % while the CO2 content decreased by 21.2 %. It can be concluded that the H2S gas more soluble in the water compared with CO2, as H2S gas has higher efficiency removal from CO2. </p><p><strong>Keywords</strong>: biogas; carbon dioxide; hydrogen sulfide, waters scrubber</p>


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2235
Author(s):  
Hsien-Tsung Wu ◽  
Hong-Ming Tsai ◽  
Tsung-Hsuan Li

Polyethylene glycol (PEG) particles were prepared using low-temperature supercritical assisted atomization (LTSAA) with carbon dioxide as the spraying medium or the co-solute and acetone as the solvent. The effects of several key factors on the particle size were investigated. These factors included the concentration of the PEG solution, precipitator temperature, saturator temperature, ratio of the volumetric flow rate of carbon dioxide to the PEG solution, and the molecular weight of PEG. Spherical and non-aggregated PEG particles, with a mean size of 1.7–3.2 µm, were obtained in this study. The optimal conditions to produce fine particles were found to be a low concentration of the PEG solution, a low precipitator temperature, and low molecular weight of the PEG. The phase behavior of the solution mixture in the saturator presented a qualitative relationship. At the optimized volumetric flow rate ratios, the composition of CO2 in the feed streams was near the bubble points of the saturator temperatures. X-ray and differential scanning calorimetry analyses indicated that LTSAA-treated PEG had a reduced degree of crystallinity, which could be modulated via the precipitator temperature. PEG microparticles prepared by a LTSAA process would be promising carriers for drug-controlled formulations of PEG-drug composite particles.


2020 ◽  
Vol 207 ◽  
pp. 01025
Author(s):  
Jaroslaw Markowski ◽  
Pawel Imilkowski ◽  
Marcin Nowacki ◽  
Damian Olejniczak ◽  
Jacek Madry ◽  
...  

The issue of measuring and determining the calorific value of fuels is related to thermodynamic analysis of the effects of the combustion process aimed at determining the amount of heat transferred to the environment. Currently, there are several methods for determining the calorific value of fuels and their methodology is related to the type of fuel being analyzed. These methods are quite complicated and require the use of specialized measuring equipment. The energy demand of modern civilization along with the need to protect the natural environment prompts the search for new ways to generate energy directed at sources other than conventional fossil fuels. Technologies related to the use of biogas, synthesis gas obtained in biomass or waste gasification processes are being introduced. The use of these fuels in industrial processes of generating heat and electricity requires caloric stability of the fuel. The caloric stability of the fuel is necessary to ensure the stability of thermal energy conversion processes that translate directly into the set values of generated electricity using electric machines. One way to assess the energy quality of a fuel is to measure its calorific value. There are several methods for determining the calorific value of a fuel, but they all require special measurement conditions. The article presents the author’s concept of a calorimeter dedicated to the analysis of the calorific value of gaseous fuels.


2014 ◽  
Vol 67 (2) ◽  
Author(s):  
Liza Md Salleh ◽  
Hasmida Mohd Nasir ◽  
Harisun Yaakob ◽  
Mohd Azizi Che Yunus

Currently, finding alternative ways of extracting medicinal plant gain more interest from the researchers.  Quercus infectoria, a medicinal plant, is rich with bioactive compound being extracted using supercritical carbon dioxide (SC-CO2) extraction which helps to maintain the quality of the product as well as green environment. CO2 is widely used as solvent due to moderate critical conditions, nontoxic and easily removed from the products. This work was performed to determine the optimum extraction parameters of SC-CO2 extraction and their effects on the total phenolic content and antioxidant activity of Q.infectoria extract. Hence, two different parameters have been investigated which were extraction time and CO2 flow rate (2, 3, 4 ml/min) while pressure (P) and temperature (T) were fixed at highest density (P = 30 MPa, T = 40oC). The results obtained from this study show that the solvent flow rate of 2 ml/min gives the highest percentage of yield (0.3652%) and the complete extraction of the sample was achieved at 80 minutes. Better quality of the extract was shown at 2 ml/min as resulted in high amount of phenolic compound in the extract presented as gallic acid equivalent (GAE) (2.04×102 mg GAE/g sample). The extracts were screened for possible antioxidant activity by 2,2-diphenyl-1-picryl hydrazyl (DPPH) free radical scavenging assays. In this study, the best result obtained for antioxidant activity was at flow rate of 3 ml/min with inhibition percentage of 96.97%.


2019 ◽  
Vol 8 (1) ◽  
pp. 69
Author(s):  
Novi Sylvia ◽  
Lia Sobrina ◽  
Nasrun Nasrun

Biogas purification from carbon dioxide compounds due to can reduce the calorific value of methane (CH4). One application used in this case is adsorption using activated carbon. This study aims to simulate the absorption of CO2 using ANSYS R19.0 and to analyze percent adsorption, adsorption capacity and isothermal adsorption. Based on variations in bed height, flow rate and pressure, the highest percent percussion occurs at 10 cm bed height, 50 cm3/minute flow rate with a pressure of 1.4 atm and the lowest percent absorption occurs at 6 cm bed height, 150 cm3/minute flow rate with a pressure of 1.2 atm. Whereas the maximum absorption capacity occurs at 8 cm bed height, 50 cm3/minute flow rate at a pressure of 1.4 atm and minimum absorption capacity occurs at 8 cm bed height, flow rate of 150 cm3/minute at a pressure of 1 atm. This adsorption process occurs in the Langmuir isotherm with R2 approaching 1, which is equal to 0.9151. The optimization results were obtained at a flow rate of 50 cm3/minute, bed height 9.46 cm and 1.4 atm pressure.


2021 ◽  
Author(s):  
Anja Haschenburger ◽  
Niklas Menke ◽  
Jan Stüve

Abstract The majority of aircraft components are nowadays manufactured using autoclave processing. Essential for the quality of the component is the realization of an air tight vacuum bag on top of the component to be cured. Several ways of leakage detection methods are actually used in industrial processes. They will be dealt with in this paper. A special focus is put on a new approach using flow meters for monitoring the air flow during evacuation and curing. This approach has been successfully validated in different trials, which are presented and discussed. The main benefit of the method is that in case of a leakage, a defined limit is exceeded by the volumetric flow rate whose magnitude can be directly correlated to the leakage’s size and position. In addition the potential of this method for the localization of leakages has been investigated and is discussed.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6486
Author(s):  
Aneta Saletnik ◽  
Bogdan Saletnik ◽  
Czesław Puchalski

Biomass is one of the most important sources of renewable energy. It is expected that in the coming decades, biomass will play a major role in replacing fossil fuels. The most commonly used biofuels include wood pellet, which is a cost-effective, uniform and easy-to-use material. In view of the growing interest in this type of resource, novel methods are being investigated to improve the quality of pellet. This article presents the results of a laboratory study focusing on wood pellets refined with waste sunflower cooking oil applied by spraying. In this work, authors attempted to modify the energy parameters of wood pellets with the use of waste cooking oil. Addition of waste cooking oil, applied at the rates of 2%, 4%, 6%, 8%, 10% and 12% relative to the weight of pellets, increased the calorific value of the pellets without decreasing their durability. The highest dose of the modifier (12%) on average led to a 12–16% increase in calorific value. In each case, the addition of sunflower oil resulted in decreased contents of ash in the pellets; on average a decrease of 16–38% was observed in the samples treated with the highest dose of the modifier. The treatment led to a higher content of elements affecting the heating value, i.e., carbon and hydrogen, which on average increased by 7.5–12%, and 7.0–10.0%, respectively. The presented method seems to be a promising way of increasing the calorific value of pellets. Further research on refining the method and the possibility of using it in industry is necessary.


Author(s):  
Katiane Pereira da Silva ◽  
Enoque Coutinho dos Santos ◽  
Ramildo Felipe Silva Gonçalves ◽  
Antonio Thiago Madeira Beirão ◽  
Fábio Israel Martins Carvalho ◽  
...  

This study aims to develop a low-cost prototype to measure the mass and volumetric flow rate of fluids through the construction of a Pitot Tube. This meter must be able to measure the mass flow rate of air for different pressure values using only the water height level variation. For the development of the prototype, low-cost materials were used, in addition to some necessary tools. These experimental models are a didactic proposal for teaching and learning about the flow of fluids discipline, where it was verified that the experimental values found presented satisfactory results correlated with the theoretical concepts of an ideal fluid present in the literature. Thus, the Bernoulli and Torricelli equations were applied to assess the quality of the measurement method, to facilitate the learning of undergraduate students in the Production Engineering Course through conciliation between theory and practice in the Fluid Mechanics Laboratory discipline classes. Finally, the prototype experiment was exposed to other students at the institutional event called “I Integrar Produção” held by UFRA at the Parauapebas Campus.


Author(s):  
Mohammad Ghalandari ◽  
Mona Malek ◽  
Hossein Alizadeh ◽  
Fatemeh Ghalandari ◽  
Amir Mosavi ◽  
...  

Among the different applicable irrigants for root canal disinfection, sodium hypochlorite 5.25% is one of the most attractive ones. The quality of root canal disinfection is dependent on some factors such as the employed approach, type of flow rate of irrigant and the size of needle. The majority of studies in the field of root canal disinfection are experimentally carried out. In the current article, Computation Fluid Dynamic (CFD) is used for modeling the antimicrobial liquid flow in the root canal and evaluate the effects of needle size and flow rate. Two needles, G28 and G30, are used for irrigation in three volumetric rates of flow including 0.10 mL&frasl;s , 0.20 mL&frasl;s and 0.30 mL&frasl;s. The results of numerical simulations revealed the improved quality of root canal disinfection by augmentation in the rate of flow and decrease in the inner diameter of the needle. According to the outcomes of the modeling, the highest average wall shear stress obtained in the case of using G28 needle and 30 mL&frasl;s flow rate, which was approximately 10.21 Pa.


Sign in / Sign up

Export Citation Format

Share Document