Hydrophobicity Characterization of Bio-Wax Derived from Taro Leaf for Surface Coating Applications

2014 ◽  
Vol 1043 ◽  
pp. 184-188 ◽  
Author(s):  
Noor Shawal Nasri ◽  
Murtala Musa Ahmed ◽  
Naemah Mohd Noor ◽  
Jibril Mohammed ◽  
Usman Dadum Hamza ◽  
...  

The hydrophobic properties as well as the presence of 1-octacosanol of taro wax extracted from taro leaf were investigated using various analytical techniques. The bio-wax extraction was achieved by immersing taro leaves samples in 500 mL chloroform at 50°C for 30 seconds and the step was repeated for the same sample using fresh chloroform. The solvent was evaporated using rotary evaporator and the raw bio-wax solution was obtained. Hydrophobicity test showed the average time for the test was 981s which exceeded the 300 s limited for hydrophilicity. TGA results indicate the existence of multi-components in taro wax with the decomposition occurring at three stages. The DSC result showed that the taro wax is composed of at least two contents, ie lower content with smaller melting point range of 50 to 60°C as well as upper content with higher melting point range of 65 to 75°C. Contact angle of droplets of distilled water on the taro wax surfaces were found to be greater than 900 and this confirmed its hydrophobic property. The n-octacosanol presented was identified through FTIR and GC-FID analyses. The functional compounds OH, CH3, CH2, and C=O were detected. From the GC-FID, the n-octacosanol was presented at 34.5 min compared to the standard solution. Plant base taro wax can be a source of sustainable and renewable hydrophobic material for use in HVAC application system.

2012 ◽  
Vol 602-604 ◽  
pp. 148-152
Author(s):  
Lek Sikong ◽  
Wasin Triprakong

Silver nano-particles (AgNPs) films were prepared and coated on glass fibers by reduction of [Ag(NH3)2]+ complex with sucrose at temperature of 400-600°C. The effect of AgNO3 solution used as a source of silver was also investigated. The synthesized films were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and electron dispersive X-ray spectrometer (EDX). It was found that both concentration and temperature have an effect on crystal growth, morphology and hydrophobic property of silver nanoparticles on surfaces of glass fibers. High temperature synthesis can partially cause grain coarsening of AgNPs on the films. The hydrophobic property of these silver coarsened grains was found to increase at the calcined temperature of 600°C, leading to easily removed from the surface coating.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
J. I. Bennetch

In a recent study of the superplastic forming (SPF) behavior of certain Al-Li-X alloys, the relative misorientation between adjacent (sub)grains proved to be an important parameter. It is well established that the most accurate way to determine misorientation across boundaries is by Kikuchi line analysis. However, the SPF study required the characterization of a large number of (sub)grains in each sample to be statistically meaningful, a very time-consuming task even for comparatively rapid Kikuchi analytical techniques.In order to circumvent this problem, an alternate, even more rapid in-situ Kikuchi technique was devised, eliminating the need for the developing of negatives and any subsequent measurements on photographic plates. All that is required is a double tilt low backlash goniometer capable of tilting ± 45° in one axis and ± 30° in the other axis. The procedure is as follows. While viewing the microscope screen, one merely tilts the specimen until a standard recognizable reference Kikuchi pattern is centered, making sure, at the same time, that the focused electron beam remains on the (sub)grain in question.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


2020 ◽  
Vol 3 (1) ◽  
pp. 30-33
Author(s):  
Muthulakshmi M ◽  
Madhumitha G

Nanotechnology is a field of applied science focused on design, synthesis and characterization of nanomaterials. The nickel and magnesium have improved their applications in transparent electrodes and nano electronics. In addition, magnesium oxide has moisture resistance and high melting point properties. In the present work has been carried out in the development of green crystalline powder of nickel doped magnesium oxide nanoparticles by Co-precipitation method, from the mixture of nickel chloride and magnesium chloride with KOH as solvent. From the XRD results, crystalline size of the particle can be observed. Spherical structure of Ni doped MgO nanoparticles were indicated by SEM results and powdered composition of samples were obtained from FTIR. EDAX represents the peak composition of the nanoparticle. The above analytical techniques have confirmed that the Ni doped MgO nanoparticles obtained from the mixture of NiCl2 and MgCl2.


2010 ◽  
Vol 72 ◽  
pp. 46-52 ◽  
Author(s):  
Laurent Royer ◽  
Stéphane Mathieu ◽  
Christophe Liebaut ◽  
Pierre Steinmetz

For energy production and also for the glass industry, finding new refractory alloys which could permit to increase the process temperatures to 1200°C or more is a permanent challenge. Chromium base alloys can be good candidates, considering the melting point of Cr itself, and also its low corrosion rate in molten glass. Two families of alloys have been studied for this purpose, Cr-Mo-W and Cr-Ta-X alloys (X= Mo, Si..). A finer selection of compositions has been done, to optimize their chemical and mechanical properties. Kinetics of HT oxidation by air, of corrosion by molten glass and also creep properties of several alloys have been measured up to 1250°C. The results obtained with the best alloys (Cr-Ta base) give positive indications as regards the possibility of their industrial use.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Toheed Akhter ◽  
Humaira Masood Siddiqi ◽  
Zareen Akhter ◽  
M. Saeed Butt

AbstractComposites from some novel polyimide and commercial epoxy were prepared aiming to improve the thermal behavior of epoxy resins. Two diamines namely 4-4'-diamino-4''-hydroxytriphenyl methane (DHTM) and 4-4'- diaminotriphenyl methane (DTM) were synthesized by reacting aniline and aldehydes according to a reported method. The synthesized diamines were blended with commercially available epoxy 1, 4-butanedioldiglycidylether (BDDE) to synthesize model epoxy amine networks which were compared with polyimideepoxy composites. The polyimides were synthesized by reaction of these diamines with aromatic anhydride namely 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA). These synthesized polyimides were dispersed in epoxy diamine networks to prepare composites. All the monomers and composites were characterized by making use of various analytical techniques including FTIR, NMR, TGA, DSC and XRD. Presence of hydroxyl group in the diamine helped in better dispersion of polyimide leading to high Tg and high char yield at 600 °C.


2021 ◽  
pp. 0887302X2110094
Author(s):  
V. Mamtha ◽  
H. N. Narasimha Murthy ◽  
V. Pujith Raj ◽  
Prashantha Tejas ◽  
C. S. Puneet ◽  
...  

Antibacterial activity and fire retardation are equally desired for protective clothing. For achieving this, AgNP and MgO are independently researched as nanofillers in Polyurethane based electrospun nanofibers and their synergistic effect is scarcely addressed. This article reports synthesis and characterization of MgO of 70.01 nm and AgNP of 51 to 76 nm by solution combustion and hydrothermal routes respectively and their incorporation in electrospinning of Polyurethane. Flow rate 1 ml/hr, applied voltage 13 kV, tip to collector distance 15 cm were adopted for the electrospinning. Nanofibers of 65 nm were obtained for PU/MgO (3 wt. %) and 106 nm for PU/MgO (3 wt. %)/Ag (1 wt. %). Addition of MgO increased the melting point, after flame time and afterglow time. Incorporation of AgNP improved antibacterial activity. PU/MgO/Ag (2 wt. %) exhibited zone of inhibition of 2.1 cm and 3 cm against E. Coli and S. Aureus, respectively.


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4735
Author(s):  
Maša Knez Hrnčič ◽  
Darija Cör ◽  
Jana Simonovska ◽  
Željko Knez ◽  
Zoran Kavrakovski ◽  
...  

Phytochemical research based on ethnopharmacology is gaining interest in industries such as functional food, nutraceuticals, cosmetics and pharmaceutical industries. Plants and plant extracts are a rich source of bioactive secondary metabolites. These compounds are often involved in plant protection against biotic or abiotic stresses. The exploitation of available technologies should be oriented and intensified to extend and enhance the continued usefulness of the plants as renewable sources of chemicals, especially medicinal compounds. This current contribution is focused on extraction and analytical techniques for their isolation from the oregano species, their characterization and their potential antioxidative, as well as their antimicrobial, antifungal and anticarcinogenic properties. The work is structured rendering to the different steps involved in the research; starting with extraction and sample preparation, followed by discussing the analytical techniques employed for the isolation and identification of compound/s responsible for the biological activity and methods and techniques for biological activity assessment.


Sign in / Sign up

Export Citation Format

Share Document