Tool Wear Mechanism in Continuous Cutting of Difficult-to-Cut Material under Dry Machining

2010 ◽  
Vol 126-128 ◽  
pp. 195-201 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah A. Ghani

Wear mechanism on the flank of a cutting tool is caused by friction between newly machined surface and the cutting tool, which plays predominant role in determining tool life. Detailed study on wear mechanism at the cutting edge of carbide tools were carried out at cutting speed of 55 – 95 m/min, feed rate of 0.15 – 0.35 mm/rev and depth of cut of 0.10 – 0.20 mm. The wear on the cutting tools was occurred predominantly on the nose radius, as effect of lower feedrate and nose radius selected. Various wear observed on both coated and uncoated cutting tool such as abrasive wear, adhesive wear, adhering chip on the cutting edge, flaking, chipping, coating delamination of coated tool, crack and fracture. The abrasive wear predominantly occurred on the flank face while the flaking on the rake face. Abrasive wear occurred at nose radius due to the depth of cut selected was low therefore, the contact area between the cutting tool and the workpiece material was small. Adhesion or welded titanium alloy onto the flank and rake faces demonstrated a strong bond at the workpiece-tool interface. The adhesion wear takes place after the coating has worn out or coating delamination has been occurred. The crack occurred possibly due to machining at high cutting speed and high depth of cut. Cutting at high cutting speed caused more heat generated at the cutting edge and at high depth of cut caused more cutting forces on the insert.

2010 ◽  
Vol 443 ◽  
pp. 371-375 ◽  
Author(s):  
Gusri Akhyar Ibrahim ◽  
Che Hassan Che Haron ◽  
Jaharah Abd. Ghani

Machining of titanium alloys as aerospace material that has extremely strength to weight ratio and resistant to corrosion at high-elevated temperature, become more interested topic. However, titanium alloys have low thermal conductivity, relative low modulus elasticity and high chemical reactivity with many cutting tool materials. The turning parameters evaluated are cutting speed (55, 75, 95 m/min), feed rate (0.15, 0.25, 0.35 mm/rev), depth of cut (0.10, 0.15, 0.20 mm) and tool grade of CVD carbide tool. The results that pattern of tool life progression is rapidly increase at the initial stage. It was due to small contact area between the cutting tool and the workpiece. At the first step of machining, the chip welded at the cutting edge but some chip removed away from the cutting edge. Wear mechanism produced are abrasive wear, adhesive, flaking, chipping at the cutting edge and coating delamination.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2013 ◽  
Vol 1 (2) ◽  
pp. 44-55
Author(s):  
Niema H Elmosawi ◽  
Shalan Gannam Al ◽  
Hamid H. Ali

The aim of the work is to study the effect of cutting condition on cutting bit of the turning machine while working on different metal ,Through using a special type of commonly used cutting tool bit in (HSS) due to the high qualifications it is characterized by cutting ,and its endurance of high temperature .Two types of metal are used in cutting (Aluminum, Mild steel),relying on the working conditions used in the machine(feed, cutting speed، depth of cut),while conducting working processes via using cooling liquid ,and without it .The wear test results shown that there are two types of wear measured by the (tool micker microscope) :Flank wear and Greater wear, are formed on the cutting edge of the tool bits as a result of the great effect of cutting conditions on the tool bit and the high temperature of the chips ;in addition to the occurrence of resulting edge on the cutting edge of the tool bits in the process of cutting aluminum , with the use of cooling liquids which prolong the of cutting tool and decrease the periods of re-grinding the cutting tool bit. 


1998 ◽  
Vol 120 (2) ◽  
pp. 259-263 ◽  
Author(s):  
T. H. Chu ◽  
J. Wallbank

A technique for measuring temperature close to the primary cutting edge in turning has been developed. The cutting temperatures of a 0.16 percent carbon bright drawn mild steel, have been measured for a range of cutting speeds and feedrates at a constant depth of cut. Tool nose radius was also varied. The correlations for the workpiece temperature of cutting speed and feedrate have been developed. The results show that the temperature correlates well with cutting speed and feedrate but the nose radius has little effect. Cutting forces were measured by a dynamometer and these were used to find the non zero forces at zero feedrate. These forces have been related to the deformation of the work material near the cutting edge of the tool and a method for calculating the cutting temperatures from these has been proposed.


2010 ◽  
Vol 443 ◽  
pp. 324-329 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Jin Peng Song

Si3N4/TiN nanocomposite tool and Si3N4/Ti(C7N3) nanocomposite tool were prepared. The cutting performance and wear mechanism of Si3N4-based nanocomposite ceramic tool was investigated by comparison with a commercial sialon ceramic tool in machining of 45 steel. Si3N4-based nanocomposite ceramic tool exhibits the better wear resistance than sialon at the relatively high cutting speed. The increased cutting performance of Si3N4-based nanocomposite ceramic tool is ascribed to the higher mechanical properties. Nano-particles can refine the matrix grains and improve the bonding strength among the matrix grains of Si3N4-based nanocomposite ceramic tool materials. It contributes to an improved wear resistance of the cutting tools during machining.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Author(s):  
Rajesh Kumar Bhushan

Optimization in turning means determination of the optimal set of the machining parameters to satisfy the objectives within the operational constraints. These objectives may be the minimum tool wear, the maximum metal removal rate (MRR), or any weighted combination of both. The main machining parameters which are considered as variables of the optimization are the cutting speed, feed rate, depth of cut, and nose radius. The optimum set of these four input parameters is determined for a particular job-tool combination of 7075Al alloy-15 wt. % SiC (20–40 μm) composite and tungsten carbide tool during a single-pass turning which minimizes the tool wear and maximizes the metal removal rate. The regression models, developed for the minimum tool wear and the maximum MRR were used for finding the multiresponse optimization solutions. To obtain a trade-off between the tool wear and MRR the, a method for simultaneous optimization of the multiple responses based on an overall desirability function was used. The research deals with the optimization of multiple surface roughness parameters along with MRR in search of an optimal parametric combination (favorable process environment) capable of producing desired surface quality of the turned product in a relatively lesser time (enhancement in productivity). The multi-objective optimization resulted in a cutting speed of 210 m/min, a feed of 0.16 mm/rev, a depth of cut of 0.42 mm, and a nose radius of 0.40 mm. These machining conditions are expected to respond with the minimum tool wear and maximum the MRR, which correspond to a satisfactory overall desirability.


2017 ◽  
Vol 749 ◽  
pp. 107-110
Author(s):  
Yuta Masu ◽  
Tomohito Fukao ◽  
Taiga Yasuki ◽  
Masahiro Hagino ◽  
Takashi Inoue

The method of imparting ultrasonic vibration to the cutting tool is known to improve the shape accuracy and finished surface roughness. However, a uniform evaluation of this function in drilling has not been achieved, and the cutting process cannot be checked from the outside. The aim of this study is to investigate the cutting characteristics in deep hole drilling when an ultrasonic vibrator on the table of a machining center provides vibration with a frequency of 20 kHz to the work piece. The ultrasonic vibrations in this system reach the maximum amplitude in the center of the work material. We evaluated the change in finished surface roughness between the section where drilling starts to the point of maximum amplitude with ultrasonic vibration. The main cutting conditions are as follows: cutting speed (V) 12.6 (mm/min); feed rate (s) 30, 60 (mm/rev); depth of cut (t) = 32 (mm); work material, tool steel; cutting tool material, HSS; point angle (σ) 118 (°); and drill diameter (φ) 4 (mm). Lubricant powder was also added to clarify the cutting effect, and compared the condition in which there was no ultrasonic vibration. The results showed that surface roughness at the point of maximum amplitude was better than that with no vibration.


Author(s):  
MAHIR AKGÜN

This study focuses on optimization of cutting conditions and modeling of cutting force ([Formula: see text]), power consumption ([Formula: see text]), and surface roughness ([Formula: see text]) in machining AISI 1040 steel using cutting tools with 0.4[Formula: see text]mm and 0.8[Formula: see text]mm nose radius. The turning experiments have been performed in CNC turning machining at three different cutting speeds [Formula: see text] (150, 210 and 270[Formula: see text]m/min), three different feed rates [Formula: see text] (0.12 0.18 and 0.24[Formula: see text]mm/rev), and constant depth of cut (1[Formula: see text]mm) according to Taguchi L18 orthogonal array. Kistler 9257A type dynamometer and equipment’s have been used in measuring the main cutting force ([Formula: see text]) in turning experiments. Taguchi-based gray relational analysis (GRA) was also applied to simultaneously optimize the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]). Moreover, analysis of variance (ANOVA) has been performed to determine the effect levels of the turning parameters on [Formula: see text], [Formula: see text] and [Formula: see text]. Then, the mathematical models for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) have been developed using linear and quadratic regression models. The analysis results indicate that the feed rate is the most important factor affecting [Formula: see text] and [Formula: see text], whereas the cutting speed is the most important factor affecting [Formula: see text]. Moreover, the validation tests indicate that the system optimization for the output parameters ([Formula: see text], [Formula: see text] and [Formula: see text]) is successfully completed with the Taguchi method at a significance level of 95%.


1997 ◽  
Vol 119 (4A) ◽  
pp. 494-501 ◽  
Author(s):  
D. A. Stephenson ◽  
T.-C. Jen ◽  
A. S. Lavine

This paper describes a model for predicting cutting tool temperatures under transient conditions. It is applicable to processes such as contour turning, in which the cutting speed, feed rate, and depth of cut may vary continuously with time. The model is intended for use in process development and trouble shooting. Therefore, emphasis is given in the model development to enable rapid computation and to avoid the need to specify parameters such as thermal contact resistances and convection coefficients which are not known in practice. Experiments were conducted to validate the predictive model. The model predictions with two different boundary conditions bound the experimental results. An example is presented which shows the utility of the model for process planning.


Sign in / Sign up

Export Citation Format

Share Document