The Applications of Electrospun Nanofibers in the Medical Materials

2010 ◽  
Vol 148-149 ◽  
pp. 1138-1143 ◽  
Author(s):  
Heng Zhang ◽  
Xiao Ming Qian

Electrospinning is a novel processing technique for the production of nanofiber non-woven materials and nanofiber non-woven materials have extremely high surface-to-mass (or volume) ratio and a porous structure .for the advantages of electrospun nanofiber non-woven materials, it can be used many filed. This review introduction the progress of electrospun nanofibers and summarize the application of electro spun nanofibers in the medical materials filed.

2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3746
Author(s):  
Vundrala Sumedha Reddy ◽  
Yilong Tian ◽  
Chuanqi Zhang ◽  
Zhen Ye ◽  
Kallol Roy ◽  
...  

Electrospun nanofibers have been exploited in multidisciplinary fields with numerous applications for decades. Owing to their interconnected ultrafine fibrous structure, high surface-to-volume ratio, tortuosity, permeability, and miniaturization ability along with the benefits of their lightweight, porous nanofibrous structure, they have been extensively utilized in various research fields for decades. Electrospun nanofiber technologies have paved unprecedented advancements with new innovations and discoveries in several fields of application including energy devices and biomedical and environmental appliances. This review article focused on providing a comprehensive overview related to the recent advancements in health care and energy devices while emphasizing on the importance and uniqueness of utilizing nanofibers. A brief description regarding the effect of electrospinning techniques, setup modifications, and parameters optimization on the nanofiber morphology was also provided. The article is concluded with a short discussion on current research challenges and future perspectives.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2034 ◽  
Author(s):  
Tomasz Kozior ◽  
Al Mamun ◽  
Marah Trabelsi ◽  
Martin Wortmann ◽  
Sabantina Lilia ◽  
...  

Electrospinning is a frequently used method to prepare air and water filters. Electrospun nanofiber mats can have very small pores, allowing for filtering of even the smallest particles or molecules. In addition, their high surface-to-volume ratio allows for the integration of materials which may additionally treat the filtered material through photo-degradation, possess antimicrobial properties, etc., thus enhancing their applicability. However, the fine nanofiber mats are prone to mechanical damage. Possible solutions include reinforcement by embedding them in composites or gluing them onto layers that are more mechanically stable. In a previous study, we showed that it is generally possible to stabilize electrospun nanofiber mats by 3D printing rigid polymer layers onto them. Since this procedure is not technically easy and needs some experience to avoid delamination as well as damaging the nanofiber mat by the hot nozzle, here we report on the reversed technique (i.e., first 3D printing a rigid scaffold and subsequently electrospinning the nanofiber mat on top of it). We show that, although the adhesion between both materials is insufficient in the case of a common rigid printing polymer, nanofiber mats show strong adhesion to 3D printed scaffolds from thermoplastic polyurethane (TPU). This paves the way to a second approach of combining 3D printing and electrospinning in order to prepare mechanically stable filters with a nanofibrous surface.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
M. Olga Guerrero-Pérez

During the last two decades, electrospinning has become a very popular technique for the fabrication of nanofibers due to its low cost and simple handling. Nanofiber materials have found utilization in many areas such as medicine, sensors, batteries, etc. In catalysis, these materials also present important advantages, since they present a low resistance to internal diffusion and a high surface area to volume ratio. These advantages are mainly due to the diameter–length proportion. A bibliographic analysis on the applications of electrospun nanofibers in catalysis shows that there are two important groups of catalysts that are being investigated, based on TiO2 and in carbon materials. The main applications found are in photo- and in electro-catalysis. The present study contributes by reviewing these catalytic applications of electrospun nanofibers and demonstrating that they are promising materials as catalysts, underlining some works to prove the advantages and possibilities that these materials have as catalysts. On one hand, the possibilities of synthesis are almost infinite, since with coaxial electrospinning quite complex nanofibers with different layers can be prepared. On the other hand, the diameter and other properties can be controlled by monitoring the applied voltage and other parameters during the synthesis, being quite reproducible procedures. The main advantages of these materials can be grouped in two: one related to their morphology, as has been commented, relative to their low resistance and internal diffusion, that is, their fluidynamic behavior in the reactor; the second group involves advantages related to the fact that the active phases can be nanoscaled and dispersed, improving the activity and selectivity in comparison with conventional catalytic materials with the same chemical composition.


Membranes ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 204 ◽  
Author(s):  
Mariela Toriello ◽  
Morteza Afsari ◽  
Ho Kyong Shon ◽  
Leonard D. Tijing

Nanofibers are one of the most attractive materials in various applications due to their unique properties and promising characteristics for the next generation of materials in the fields of energy, environment, and health. Among the many fabrication methods, electrospinning is one of the most efficient technologies which has brought about remarkable progress in the fabrication of nanofibers with high surface area, high aspect ratio, and porosity features. However, neat nanofibers generally have low mechanical strength, thermal instability, and limited functionalities. Therefore, composite and modified structures of electrospun nanofibers have been developed to improve the advantages of nanofibers and overcome their drawbacks. The combination of electrospinning technology and high-quality nanomaterials via materials science advances as well as new modification techniques have led to the fabrication of composite and modified nanofibers with desired properties for different applications. In this review, we present the recent progress on the fabrication and applications of electrospun nanofiber composites to sketch a progress line for advancements in various categories. Firstly, the different methods for fabrication of composite and modified nanofibers have been investigated. Then, the current innovations of composite nanofibers in environmental, healthcare, and energy fields have been described, and the improvements in each field are explained in detail. The continued growth of composite and modified nanofiber technology reveals its versatile properties that offer alternatives for many of current industrial and domestic issues and applications.


2003 ◽  
Vol 788 ◽  
Author(s):  
K. Desai ◽  
C. Sung

ABSTRACTElectrospinning derived from electro spraying is a process by which sub-micron polymer fibers can be produced using an electrostatically driven jet of polymer solution. The fibers are collected as non-woven mat and offer a high surface to volume ratio. Polyaniline is an organic conducting polymer and can be used to fabricate conducting nano fibers by blending with suitable polymers like poly methyl methacrylate. In this present work we have explored the effects of electrospinning parameters on the formation of PANI/PMMA fibers and the phase morphology of the electrospun fibers using advanced electron microscopy and scanning probe microscopy techniques.


SURG Journal ◽  
2012 ◽  
Vol 5 (2) ◽  
pp. 63-73 ◽  
Author(s):  
Nishath Khan

Electrospinning is a technology that has been widely used as a novel method for the generation of nano scale fibres. Electrospun fibres are used in a wide range of applications from electronics to textile. The viability and popularity of this technology can be evidenced by its ease of use and the simplicity of the science behind building the electrospinning machine. The generated fibres have a high surface area- to- volume ratio, the fibrous mats are highly porous and display excellent mechanical properties when compared to other materials of the same scale. In the past decade, this technology has taken off with the use of biocompatible and biodegradable polymers. This review is a summary of the different ways in which electrospinning can be used in the biomedical field. This article analyzes the recent advances of this technology in tissue engineering, drug delivery and in enzyme immobilisation, which once again showcases the versatility of the electrospinning procedure.


2014 ◽  
Vol 1621 ◽  
pp. 59-69
Author(s):  
Elisabete D. Pinho ◽  
Albino Martins ◽  
José V. Araújo ◽  
Rui L. Reis ◽  
Nuno M. Neves

ABSTRACTPioneer works on nanocomposites were focused in carbon nanofibers or nanotubes dispersed in epoxy matrix, a viscous liquid facilitating the compounding stage. The interest in developing new composites aimed for biomedical applications led us to design new nanocomposites based in biodegradable polymers with demonstrated biological performance.We report herein the development of micro-nano composites by extruding poly(butylene succinate) (PBS) microfibers with two different diameters, 200 and 500 µm, reinforced with electrospun chitosan nanofibers. Analysis of the microfibers showed high levels of alignment of the reinforcing phase and excellent distribution of the nanofibers in the composite. Its geometry facilitates the development of orthotropy, maximizing the reinforcement in the axial fiber main axis.The biodegradable microfiber composites show an outstanding improvement of mechanical properties and of the kinetics of biodegradation, with very small fractions (0.05 and 0.1 wt.%) of electrospun chitosan nanofibers reinforcement. The high surface area-to-volume ratio of electrospun nanofibers combined with the increased water uptake capability of chitosan justify the accelerated kinetics of biodegradation of the composite as compared with the unfilled synthetic polymer.


2011 ◽  
Vol 328-330 ◽  
pp. 857-860 ◽  
Author(s):  
Chau Chang Chou ◽  
Jyun Hao You ◽  
Cheng Lun Wu

A novel processing technique using a series of mixing/refluxing procedures and high-pressure crystallization (HPC) to fabricate nanodiamond/ultra high molecular weight polyethylene (ND/UHMWPE) nanocomposites for biomedical application was examined. For better mimetic lubrication, a porous structure was implemented in this study. Vitamin E as an anti-oxidation additive was also incorporated in selected porous specimens. The morphology of the specimens was investigated by transmission electron microscopy. The phase and crystal characteristics were revealed by Raman spectroscopy and X-ray diffraction. Shore D hardness was used to study the effect of the material’s porous structure and particle-induced crystallization on the bulk mechanical property. The dispersion of NDs in the UHMWPE matrix can significantly promote the crystallinity of the HPC specimens, even with a porous structure. However, the bulk hardness does not reveal this improvement in crystal microstructure.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yan Wang ◽  
Tomoyuki Yokota ◽  
Takao Someya

AbstractElectrospun nanofibers have received considerable attention in the field of soft electronics owing to their promising advantages and superior properties in flexibility and/or stretchability, conductivity, and transparency; furthermore, their one-dimensional nanostructure, high surface area, and diverse fibrous morphologies are also desirable. Herein, we provide an overview of electrospun nanofiber-based soft electronics. A brief introduction of the unique structure and properties of electrospun nanofiber materials is provided, and assembly strategies for flexible/stretchable electronics are highlighted. We then summarize the latest progress in the design and fabrication of representative flexible/stretchable electronic devices utilizing electrospun nanofibers, such as flexible/stretchable conductors, sensors, energy harvesting and storage devices, and transistors. Finally, a conclusion and several future research directions for electrospun nanofiber-based soft electronics are proposed.


Sign in / Sign up

Export Citation Format

Share Document