Electrical Conductivity and Density of the Molten CaCl2-NaCl-Al2O3 Electrolyte Materials

2010 ◽  
Vol 152-153 ◽  
pp. 19-24
Author(s):  
Hong Wei Xie ◽  
Jin Xia Wang ◽  
Yu Chun Zhai ◽  
Cheng De Li ◽  
Xiao Yun Hu

The low-melting CaCl2-NaCl-Al2O3 materials were used as the electrolyte of the low temperature aluminium electrolysis. The electrical conductivity and density of the materials were measured by the Continuously Varying Cell Constant Technique, ac-techniques, and Archimedes method. The materials were composed of 71wt.%~87wt.%CaCl2 (corresponding NaCl), NaCl and Al2O3(without and saturated). The measurement temperature ranges were 550°C~800°C. The results showed that Additive Al2O3 decreased the electrical conductivity of the materials, and resulted in the increase of the activation energy of conductance. The function relationship between the electrical conductivity and temperature was linear, and conformed to the Arrhenius equation. Increasing the CaCl2 content decreased the electrical conductivity of the materials, but the density was increased. With the increase of the CaCl2, the decrease scope of the electrical conductivity was small and the increase trend of the density was slow down. The decisive factor of the electrical conductivity of the materials was temperature.

Author(s):  
Shiveom Srivastava ◽  
S. K. Srivastava ◽  
Krishna K. Srivastava ◽  
Narayan P. Srivastava

Electrical conductivity of Ge10 Se90-x Bix (x=0,2,4,6,8,10) glassy systems prepared by melt quenching technique has been studied at different temperature in bulk form through I-V characteristic curves. It has been observed that the electrical conductivity increases as the Bi concentration increases up to 4 atomic weight percentages and on further addition of Bi it reduces. The variation in electrical conductivity with Bi concentration is attributed to the Se-Bi bond concentration. Using the Arrhenius equation of conductivity, the activation energy of conduction is evaluated. The effect of Bi concentration on activation energy has also been studied. It is quite evident from results that Poole-Frankel and Rechardson-Schottky conduction mechanism hold good for conduction in these glasses.


2005 ◽  
Vol 480-481 ◽  
pp. 315-322 ◽  
Author(s):  
J. Pedlíková ◽  
J. Zavadil ◽  
Olga Prochazková ◽  
J. Kaluzny

Binary and ternary TeO2 based oxy-chloride glass systems have been prepared and characterised by absorption and low-temperature photoluminescence spectroscopy, and by the measurements of dc electrical conductivity. Prepared glasses exhibit transmittance 75-80% in a broad transmission range 0.3 – 6.5µm with modest shift of upper absorption edge to longer wavelength as heavier ions are introduced into the system. Electronic transitions between 4f-4f inner shells of Pr3+ ions embedded into the host glass have been investigated in a wide temperature range as a function of used precursors used for doping. The temperature dependence of dc electrical conductivity exhibits Arrhenius plots with the single activation energy. PACS codes 81.05.Kf, 78.20.Ci, 78.55.Hx


1983 ◽  
Vol 61 (7) ◽  
pp. 1557-1561 ◽  
Author(s):  
Nobuhito Imanaka ◽  
Gin-Ya Adachi ◽  
Jiro Shiokawa

In order to develop useful solid electrolytes for SO2 detectors, Na2SO4, Na2SO4–Eu2(SO4)3, Na2SO4–NaVO3, and Na2SO4–NaVO3–Ln2(SO4)3 (Ln = Eu, Pr) systems have been prepared, and their electrical and thermal properties have been measured. By doping Na2SO4 with Eu2(SO4)3, the electrical conductivity increases and the apparent activation energy of the Na2SO4–Eu2(SO4)3 system shows a value between those of Na2SO4-III and Na2SO4-I. Addition of NaVO3 and Ln2(SO4)3 (Ln = Eu, Pr) to Na2SO4 suppressed the phase transformation, by stabilizing the structure of the Na2SO4-I phase even at a relatively low temperature.


2013 ◽  
Vol 22 ◽  
pp. 255-260 ◽  
Author(s):  
R. V. BARDE ◽  
S. A. WAGHULEY

The binary glassy systems 60V2O5-(40-x)P2O5 –xB2O3 were prepared by melt quenching technique. The mole of B2O3 was varies from 5 to 20 mol % with constant mol % of V2O5 during preparation of glass samples. The dc electrical conductivity of samples was measured in temperature range 303-473 K and found to be higher for sample 60 V2O5-20P2O5 –20B2O3 . Using the Arrhenius equation of conductivity, the activation energy of conduction is estimated. The conduction in these glasses is takes place by phonon-assisted hopping between the localized states.


2019 ◽  
Vol 34 (01) ◽  
pp. 2050008
Author(s):  
V. A. Abdurahmanova ◽  
N. M. Abdullaev ◽  
Sh. S. Ismayilov

The temperature range of [Formula: see text] = 77–770 K in the system alloys: Holl coefficient [Formula: see text], thermo-emf [Formula: see text], electric conductivity [Formula: see text], measured [Formula: see text]-density of components and analyzed. It has been established that samarium additive atoms contain donor-type properties and the effectiveness increases with the temperature increase: up to 40% proportional to [Formula: see text] K in [Formula: see text]-type specimens, whereas in [Formula: see text]-type samples this increase is higher and covers the contents of pH varying from [Formula: see text] to [Formula: see text]. An electrical conductivity of compounds increased due to the carrier activation with further increase of temperature. The activation energy of carriers at low temperatures ([Formula: see text] K) is [Formula: see text] eV for [Formula: see text] mol.% and [Formula: see text] mol.% compounds at [Formula: see text] = 77–320 K and for [Formula: see text] mol.% and [Formula: see text] mol.% compounds are [Formula: see text] eV. [Formula: see text] const at [Formula: see text]–400 K for [Formula: see text] mol.% and [Formula: see text] mol.% compounds, and passing with minimum increases at [Formula: see text] = 400–500 K.


2020 ◽  
Vol 8 (1) ◽  
pp. 130-134
Author(s):  
Rasha Hamid Ahmed

"In this study, nickel oxide (NPs) films were produced by doping each element with 2% zinc, tin, iron, cobalt and magnesium. pulsed laser deposition was used to deposit them on glass substrates , and we used a pulsed Nd-YAG laser with a wavelength of 1064nm. All the films were annealed with one temperature (573k). The electrical properties of the prepared films were studied, such as the continuous electrical conductivity and activation energy, and we found that increasing the temperature increases the electrical conductivity values Also, the value of the electrical conductivity and the activation energy change according to the type of added doping. We also discovered many activation energy values in the temperature ranges of (308K-428K) , and observed the conduct of nanoparticle oxide doping with various metals at these temperatures.


2020 ◽  
Vol 1 (1) ◽  
pp. 13-25
Author(s):  
Salama A. H.

Electrical properties of some new cyclopentenone derivatives have been studied. The structures of prepared samples were characterized by (UV), (XRD) and (SEM). The dependence of electrical properties such as σdc , σac , ɛ' and ɛ'' on frequency and temperature were studied at frequency range from 50 Hz to 5 MHz and the temperature range from 25oC to 140oC. It was found that, ɛ' decreased with increasing frequency while it increases with increasing temperatures within the used ranges. Moreover, dielectric constant is structural dependent which is obvious from the variation of dielectric constant for each sample. Ac-electrical conductivity increased with increasing frequency which was attributed to the polarization of the charge carriers. The temperature dependence of dc-electrical conductivity show typical Arrhenius relation for the three prepared samples. The activation energy calculated from Arrhenius equation and the results are discussed in detailed.


2002 ◽  
Vol 80 (5) ◽  
pp. 599-604 ◽  
Author(s):  
O El-Shazly ◽  
T Ramadan ◽  
M El-Hawary ◽  
N El-Anany ◽  
H A Motaweh ◽  
...  

Ternary chalcogenide glasses in the system Se–S were prepared by quenching from the melt. Measurements of the temperature dependence of direct current (dc) electrical conductivity have been made in the temperature interval from room temperature down to 30 K. Two types of conduction mechanisms were found to dominate in the measured temperature range, namely band conduction through extended states (which dominates at the high-temperature region) and hopping around the Fermi level (which dominates at the low-temperature region). The dc conductivity activation energy and pre-exponential factor were calculated for the two types of conduction. It was found that the activation energy and the pre-exponential factor are composition dependent. PACS Nos.: 72.20-i, 73.61.Jc, and 81.05.Gc


2008 ◽  
Vol 368-372 ◽  
pp. 1451-1453
Author(s):  
Young Joon Jung ◽  
Young Seok Kim ◽  
Kyu Ho Lee ◽  
Tae Ho Kim ◽  
Bong Ki Ryu

This work is to compare the electric conductive activation energies with increasing Na2O in SiO2 and B2O3 glasses. The electrical conductivity is measured by TER2000 analyzer and it is compared with value calculated by Arrhenius equation. The conductivity of SiO2 system glasses is higher than B2O3 system glasses, and the highest value is 1.36 × 10-4 cm-1 in 60SiO2-40Na2O glass. The activation energy from conductivity is proportion to temperature and inverse proportion to Na2O contents. The activation energy is analyzed from density and CTE (thermal expansion coefficient).


2012 ◽  
Vol 549 ◽  
pp. 65-69 ◽  
Author(s):  
Yu Qin Liu ◽  
Hong Tu Xia ◽  
Hong Wen Ma

The aegirine-augite syenite potash ore, taken from Changling, Luonan in Shannxi province, were hydrothermally decomposed over the temperature ranges of 533 K to 563 K using calcium hydroxide as additive. The dissolution ratio of the K2O at different reaction temperature and time was determined. Analysis of the experimental results revealed that the dissolution rate of potash ore satisfies the chemical reaction controlled kinetic equation. The rate constant of hydrothermal reaction at different temperatures was obtained. The activation energy was calculated using the Arrhenius equation. The hydrothermal decomposition mechanism of microcline was proposed.


Sign in / Sign up

Export Citation Format

Share Document