Synthesis of C60-Doped Polyaniline Nanoshuttles

2011 ◽  
Vol 284-286 ◽  
pp. 1010-1013 ◽  
Author(s):  
Qi Guan Wang ◽  
Su Min Wang ◽  
Jian Ping Li ◽  
Hiroshi Moriyama

Polyaniline–C60nanoshuttle composites have been successfully synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in the presence of C60using an interfacial reaction at room temperature, in which the molar ratio of oxidant to monomer was kept at 0.25:1. The influence of initial C60/aniline molar ratio on the supramolecular structure of the composites was studied. It was found that at low molar ratio (0.01:1) amorphous powders could be synthesized, while the as-synthesized products at the higher molar ratio (0.04:1) were shuttle-like superstructures. FTIR and UV-vis spectroscopy confirmed the presence of C60in the resultant nanocomposite and suggested significant interaction of polyaniline with C60. The evolution of supramolecular structure of polyaniline nanoshuttle–C60nanocomposites was discussed.

2009 ◽  
Vol 87-88 ◽  
pp. 311-316 ◽  
Author(s):  
Hui Huang ◽  
Zhong Cheng Guo

Doped polyaniline (PANI) was synthesized by chemical oxidative polymerization of aniline in aqueous acidic medium with mixed sulfuric acid and 5-sulfosalcyclic acid as complex dopant , and ammonium peroxydisulfate as an oxidant, and heat treated at 150°C, 200°C, 250°Cand 300°C for 2 hours in vacuum. Different intrinsic and extrinsic structural changes due to heat treatment were determined from FTIR and XRD measurements. When PANI is subjected to heat treatment, different changes are taking place in the system like doping, dedoping (extrinsic), oxidation and changes in crystal structure (intrinsic). Mechanisms for doping, dedoping and oxidation, are proposed.


Author(s):  
Casey McCullough ◽  
Matthew Heywood ◽  
Hussein Samha

The effect of phospholipid, 1,2-Dipalmitoyl-sn-glycero-3-Phosphocholine (DPPC) on the spectroscopy of the cyanine dye, 1-ethyl-1’-octadecyl-2,2’-cyanine iodide (PIC-18), has been investigated using UV-Vis spectroscopy. Vesicles of DPPC containing PIC-18 in the molar ratio of 1:3 (dye/phospholipids) were prepared in aqueous solution. J-aggregates of PIC-18 were detected in the bilayer wall of the vesicles. When an aqueous solution of mixed PIC-18/DPPC vesicles is treated with excess DPPC vesicles that are prepared separately, the dye molecules in the mixed vesicles underwent a rapid (aggregate)n' n(monomer) equilibrium as the appearance of only one isosbestic point in the absorbance of the dye indicates. The equilibrium constant was calculated at room temperature (Keq = 6.7x10-2). An aggregation number of 4 was calculated for the dye in the bilayer vesicles.


2021 ◽  
Vol 33 (8) ◽  
pp. 1805-1810
Author(s):  
Renukacharya Ganapati Khanapure ◽  
Sharad Kashinath Awate ◽  
Suresh Vasant Patil

In this work, polyaniline (PANI) film was successfully synthesized by in situ chemical polymerization technique by using aromatic carboxylic acids like benzoic acid, p-methoxybenzoic acid and p-nitrobenzoic acid, doped in presence of ammonium persulphate as an oxidant. Electric conductivity study of doped polyaniline has been studied concerning temperature. Surface composition morphology and structure of synthesized carboxylic acid doped polyaniline were characterized via different methods such as the electrical conductivity by two probes, UV-vis spectroscopy, FTIR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The PANI based ammonia gas sensor was synthesized by using, benzoic acid, p-methoxybenzoic acid and p-nitrobenzoic acid as dopant which has excellent selectivity towards NH3 and 28, 426 and 327% response of ammonia gas at 100 ppm concentration, respectively at room temperature.


2017 ◽  
Vol 16 (03) ◽  
pp. 1650037 ◽  
Author(s):  
Nishigandh S. Pande ◽  
Dipika Jaspal ◽  
Jalindar Ambekar

Poly (N-ethyl aniline)/Ag organic–inorganic composite has been synthesized by a single step in situ chemical oxidative polymerization method. The synthesis of Poly (N-ethyl aniline)/Ag nanocomposite has been confirmed by X-ray diffraction (XRD), Ultraviolet-Vis Spectroscopy (UV-visible), Fourier transform infrared analysis (FTIR) and FE-SEM investigations. XRD spectral study exhibited major diffraction in the range 20–80[Formula: see text] (2[Formula: see text]) and indicated the semicrystalline nature of poly (N-ethyl aniline)/Ag nanocomposite. Characteristic peaks in UV-visible and FTIR spectra of poly (N-ethyl aniline) switched to higher wave numbers in poly (N-ethyl aniline)/Ag nanocomposite. Peaks at 1789[Formula: see text]cm[Formula: see text], 1595[Formula: see text]cm[Formula: see text], 667[Formula: see text]cm[Formula: see text] and 501[Formula: see text]cm[Formula: see text] in FTIR spectrum confirmed the formation of poly (N-ethyl aniline)/Ag nanocomposite. FE-SEM photographs reported agglomerated granular particulate nature of poly (N-ethyl aniline)/Ag nanocomposite. Synthesized poly (N-ethyl aniline)/Ag nanocomposite exhibited a high response to humidity, good reproducibility and stability at room temperature. An appreciable response was shown in the presence of 40% humid atmosphere for up to successive four cycles. Composite sensitivity has been found to increase with the increasing concentration of humidity, at room temperature.


MRS Advances ◽  
2020 ◽  
Vol 5 (63) ◽  
pp. 3353-3360
Author(s):  
Susana Helena Arellano Ramírez ◽  
Perla García Casillas ◽  
Christian Chapa González

AbstractA significant area of research is biomedical applications of nanoparticles which involves efforts to control the physicochemical properties through simple and scalable processes. Gold nanoparticles have received considerable attention due to their unique properties that they exhibit based on their morphology. Gold nanospheres (AuNSs) and nanorods (AuNRs) were prepared with a seed-mediated method followed of polyethylene glycol (PEG)-coating. The seeds were prepared with 0.1 M cetyltrimethyl-ammonium bromide (CTAB), 0.005 M chloroauric acid (HAuCl4), and 0.01 M sodium borohydride (NaBH4) solution. Gold nanoparticles with spherical morphology was achieved by growth by aggregation at room temperature, while to achieve the rod morphology 0.1 M silver nitrate (AgNO3) and 0.1 M ascorbic acid solution were added. The gold nanoparticles obtained by the seed-mediated synthesis have spherical or rod shapes, depending on the experimental conditions, and a uniform particle size. Surface functionalization was developed using polyethylene glycol. Morphology, and size distribution of AuNPs were evaluated by Field Emission Scanning Electron Microscopy. The average size of AuNSs, and AuNRs was 7.85nm and 7.96 x 31.47nm respectively. Fourier transform infrared spectrometry was performed to corroborate the presence of PEG in the AuNPs surface. Additionally, suspensions of AuNSs and AuNRs were evaluated by UV-Vis spectroscopy. Gold nanoparticles were stored for several days at room temperature and it was observed that the colloidal stability increased once gold nanoparticles were coated with PEG due to the shield formed in the surface of the NPs and the increase in size which were 9.65±1.90 nm of diameter for AuNSs and for AuNRs were 29.03±5.88 and 8.39±1.02 nm for length and transverse axis, respectively.


2017 ◽  
Vol 13 (2) ◽  
pp. 4671-4677 ◽  
Author(s):  
A. M. Abdelghany ◽  
A.H. Oraby ◽  
Awatif A Hindi ◽  
Doaa M El-Nagar ◽  
Fathia S Alhakami

Bimetallic nanoparticles of silver (Ag) and gold (Au) were synthesized at room temperature using Curcumin. Reduction process of silver and gold ions with different molar ratios leads to production of different nanostructures including alloys and core-shells. Produced nanoparticles were characterized simultaneously with FTIR, UV/vis. spectroscopy, transmission electron microscopy (TEM), and Energy-dispersive X-ray (EDAX). UV/vis. optical absorption spectra of as synthesized nanoparticles reveals presence of surface palsmon resonance (SPR) of both silver at (425 nm) and gold at (540 nm) with small shift and broadness of gold band after mixing with resucing and capping agent in natural extract which suggest presence of bimetallic nano structure (Au/Ag). FTIR and EDAX data approve the presence of bimetallic nano structure combined with curcumin extract. TEM micrographs shows that silver and gold can be synthesized separately in the form of nano particles using curcumin extract. Synthesis of gold nano particles in presence of silver effectively enhance and control formation of bi-metallic structure.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1360
Author(s):  
Qiaohua Feng ◽  
Huanhuan Zhang ◽  
Yunbo Shi ◽  
Xiaoyu Yu ◽  
Guangdong Lan

A sensor operating at room temperature has low power consumption and is beneficial for the detection of environmental pollutants such as ammonia and benzene vapor. In this study, polyaniline (PANI) is made from aniline under acidic conditions by chemical oxidative polymerization and doped with tin dioxide (SnO2) at a specific percentage. The PANI/SnO2 hybrid material obtained is then ground at room temperature. The results of scanning electron microscopy show that the prepared powder comprises nanoscale particles and has good dispersibility, which is conducive to gas adsorption. The thermal decomposition temperature of the powder and its stability are measured using a differential thermo gravimetric analyzer. At 20 °C, the ammonia gas and benzene vapor gas sensing of the PANI/SnO2 hybrid material was tested at concentrations of between 1 and 7 ppm of ammonia and between 0.4 and 90 ppm of benzene vapor. The tests show that the response sensitivities to ammonia and benzene vapor are essentially linear. The sensing mechanisms of the PANI/SnO2 hybrid material to ammonia and benzene vapors were analyzed. The results demonstrate that doped SnO2 significantly affects the sensitivity, response time, and recovery time of the PANI material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michika Sawada ◽  
Kandi Sridhar ◽  
Yasuharu Kanda ◽  
Shinya Yamanaka

AbstractWe report a synthesis strategy for pure hydroxyapatite (HAp) using an amorphous calcium carbonate (ACC) colloid as the starting source. Room-temperature phosphorylation and subsequent calcination produce pure HAp via intermediate amorphous calcium phosphate (ACP). The pre-calcined sample undergoes a competitive transformation from ACC to ACP and crystalline calcium carbonate. The water content, ACC concentration, Ca/P molar ratio, and pH during the phosphorylation reaction play crucial roles in the final phase of the crystalline phosphate compound. Pure HAp is formed after ACP is transformed from ACC at a low concentration (1 wt%) of ACC colloid (1.71 < Ca/P < 1.88), whereas Ca/P = 1.51 leads to pure β-tricalcium phosphate. The ACP phases are precursors for calcium phosphate compounds and may determine the final crystalline phase.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2011 ◽  
Vol 306-307 ◽  
pp. 679-683
Author(s):  
Li Bo Sun ◽  
Yuan Chang Shi ◽  
Lin Ya Chu ◽  
Bing Chang Zhang ◽  
Jiu Rong Liu

The straight and orderly microrods of polypyrrole(PPy) was synthesized in a microemulsion system consisted of cetyltrimethylammonium bromide(CTAB), n-pentanol, water and pyrrole by chemical oxidative polymerization, in which CTAB was used as soft templates and APS was used as the oxidant. Fourier-transform infrared spectroscopy (FTIR) was used to characterize the structure of the PPy microrods. Transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM) was used to characterize the morphology of the samples. We discussed the impact of temperature, the adding way of the oxidant, the amount of cosurfactant n-pentanol to the morphology of PPy microrods. The results showed that straight and orderly PPy microrods with a diameter about 300nm and a length up to 20μm were synthesized when the temperature was kept at room temperature (25°C), the dropping time of APS was more than 1.5h, the ratio of CTAB to n-pentanol was 0.6:1, and the polymerization time was about 24h. We studied the growth process of PPy microrods by HTEM analysis. HTEM images revealed that the growth process of PPy changed from hollow microrods, semi-hollow microrods, and finally solid microrods.


Sign in / Sign up

Export Citation Format

Share Document