Microstructures and Mechanical Properties of the Mg-5Y- MM Alloys

2011 ◽  
Vol 295-297 ◽  
pp. 1718-1721
Author(s):  
Ke Liu ◽  
Jian Meng ◽  
Shu Bo Li ◽  
Chao Hui Wang

The microstructures and mechanical properties of the Mg-5Y-xMM alloys have been investigated, where MM stands for the Ce-rich misch metal. It was found that the additions of the MM led to refinement of the microstructures and improvement of the mechanical properties. The dynamic recrystallization has occurred during hot extrusion. As a result, the mechanical properties of the alloys were greatly improved after hot extrusion. It was indicated that the specimens of the extruded alloy Mg-5Y-3MM displayed a higher tensile strength, and the values of the ultimate tensile strength and yield tensile strength were 260 and 183MPa, respectively.

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2022 ◽  
Vol 327 ◽  
pp. 82-97
Author(s):  
He Qin ◽  
Guang Yu Yang ◽  
Shi Feng Luo ◽  
Tong Bai ◽  
Wan Qi Jie

Microstructures and mechanical properties of directionally solidified Mg-xGd (5.21, 7.96 and 9.58 wt.%) alloys were investigated at a wide range of growth rates (V = 10-200 μm/s) under the constant temperature gradient (G = 30 K/mm). The results showed that when the growth rate was 10 μm/s, different interface morphologies were observed in three tested alloys: cellular morphology for Mg-5.21Gd alloy, a mixed morphology of cellular structure and dendritic structure for Mg-7.96Gd alloy and dendrite morphology for Mg-9.58Gd alloy, respectively. Upon further increasing the growth rate, only dendrite morphology was exhibited in all experimental alloys. The microstructural parameters (λ1, λ2) decreased with increasing the growth rate for all the experimental alloy, and the measured λ1 and λ2 values were in good agreement with Trivedi model and Kattamis-Flemings model, respectively. Vickers hardness and the ultimate tensile strength increased with the increase of the growth rate and Gd content, while the elongation decreased gradually. Furthermore, the relationships between the hardness, ultimate tensile strength, the growth rate and the microstructural parameters were discussed and compared with the previous experimental results.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744001 ◽  
Author(s):  
Yufan Wang ◽  
Yingbo Zhang ◽  
Wei Gao

The microstructures and mechanical properties of as-extruded Mg–2.3Zn–0.18Y–[Formula: see text]Zr ([Formula: see text] = 0.03, 0.06 and 0.13 at.%) alloys and aged Mg–2.3Zn–0.18Y–0.13Zr alloy were studied. The results revealed that the microstructures of as-extruded Mg–2.3Zn–0.18Y–[Formula: see text]Zr alloys are typical bimodal structures. The coarse [Formula: see text]-Mg grains are surrounded by fine dynamically recrystallized [Formula: see text]-Mg grains. The average size of [Formula: see text]-Mg grains decreases with increasing Zr content. Moreover, the addition of Zr (at.%) can improve the mechanical properties of alloy. The as-extruded Mg–2.3Zn–0.18Y–0.13Zr alloy has the best mechanical properties with ultimate tensile strength (UTS) and yield strength (YS) of 346 MPa and 292 MPa, respectively, and an elongation of 26.7%, which can be attributed to the grain refining effect and precipitate strengthening. The UTS and elongation of Mg–2.3Zn–0.18Y–0.13Zr alloy changed slightly after aging treatment, but the YS increases remarkably, with the maximum increase of 30 MPa. The fracture surfaces of all alloys consist of many tearing ridges and dimples.


Author(s):  
G Gaurav ◽  
Q Murtaza ◽  
N Yuvraj ◽  
D Mandal ◽  
KL Sahoo ◽  
...  

Magnesium alloys are increasingly accepted in automobile industry owing to their greater strength-to-weight ratio. These qualities lead to less vehicle weight and better fuel economy. Therefore, in the present work an effort has been made to develop a new Mg alloy system that exhibits greater ductility together with greater mechanical strength. Misch metal is added in Mg-based alloys to investigate the changes in mechanical properties. The microstructure of alloys Mg–4Al–3Zn–3Sn–3Pb (H1) and Mg–4Al–3Zn–3Sn–3Pb–0.5MM (H2) are dendritic in nature while for Mg–3Zn–3Sn–3Pb–2Si (H3) the “Chinese script” Mg2Si intermetallic structure was obtained. The ultimate tensile strength and elongation of Mg–4Al–3Zn–3Sn–3Pb–0.5MM (H2) alloy are about 40% and 100 % higher than that of H3 alloy. The ultimate tensile strength, yield strength, and percentage elongation of H2 alloy are 170 MPa, 44 MPa, and 3.4%, respectively.


2013 ◽  
Vol 668 ◽  
pp. 823-829 ◽  
Author(s):  
Xiu Qing Zhang ◽  
Ge Chen ◽  
Yang Wang ◽  
Min Yu Han

Homogenized magnesium alloy Mg-6Zn-Si-0.25Ca has been hot-extruded and then aging treated for improving the magnesium alloy plastic deformation ability and promoting applications of magnesium alloys. In the hot extrusion process, the influences of extrusion parameters for microstructures and mechanical properties of Mg-6Zn-Si-0.25Ca magnesium alloy were investigated. The results show that dynamic recrystallization occurred during hot extrusion. Compared with as-cast alloy, the grains are fined remarkably, and the mechanical properties are enhanced obviously. Twin crystals appeared in grains after hot extrusion, with the extrusion temperature rising, twin crystal structures has been reduced. Aging further increased the mechanical properties of the estruded alloy. The ultimate tensile strength of Mg-6Zn-Si-0.25Ca alloy is about 385 MPa and the elongation is about 11% when extruded at 320°C(extrusion ratio is 10) and aged at 190°C for 8h.


2013 ◽  
Vol 380-384 ◽  
pp. 4372-4375
Author(s):  
Li Zhang ◽  
Zheng Liu ◽  
Ping Li Mao

The microstructure evolution and mechanical properties of as-extruded Mg-2.5 Zn-0.5Y Mg alloy were investigated. The grainy intermetallic phases (I-phase and w-phase) observed in the as-cast Mg-2.5Zn-0.5Y alloy distributed homogeneously in the hot extruded alloys. Compared with the cast one, the extruded alloy shows predominant mechanical properties as the result of refined microstructure and the dispersed intermetallic phases formed during hot extrusion. The ultimate tensile strength and the yield tensile strength of the extruded alloy were 354.8 MPa and 305.9MPa respectively.


2011 ◽  
Vol 686 ◽  
pp. 96-100
Author(s):  
Shu Bo Li ◽  
Han Li ◽  
Jian Hui Li ◽  
Wen Bo Du ◽  
Zhao Hui Wang

The microstructures and mechanical properties of the Mg-Zn-Er alloys have been investigated. The results show that the alloying elements (Zn/Er) with different ratio have a great effect on the microstructure and mechanical properties of the magnesium alloys, especially for the phase constitutes. Furthermore, the more attractive result is that the quasicrystalline phase, as the main secondary phase, precipitates during solidification in the alloy with addition of Zn/Er ration of 6. The cast Mg-5Zn-0.83Er alloy exhibits the ultimate tensile strength and yield tensile strength are 190MPa and 80MPa at room temperature, respectively, with an elongation of 15%.


2011 ◽  
Vol 391-392 ◽  
pp. 559-563
Author(s):  
Shu Yan Wu ◽  
Ze Sheng Ji ◽  
Li Hua Wen ◽  
Hong Bo Li

AZ31B magnesium alloys recycled by solid-state process from oxidized chip were extruded repeately. Microstructures and mechanical properties of recycled alloys for different extrusion times were studied. With the increasing extrusion times, the breaking degree and homogeneity of oxide increase and stream line feature of oxide become less obvious. Second extrusion make dynamic recrystallization microstructure of recycled alloy become more homogeneous and fine, but the microstructure is not refined furtherly after 3 and 4 times extrusion. The ultimate tensile strength increases with the increasing extrusion time, which resulting from the microstructure evolution during repeating extrusion and the enhanced bonding between oxide and magnesium alloy matrix. The elongation to failure of recycled alloy increases after second extrusion and continuously decreases after 3 and 4 time extrusion. This is determined not only by the variation of dynamic recrystallization microstructure and bonding strength between chips but also by the distribution status of oxide.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 990-995 ◽  
Author(s):  
GUOQING CHEN ◽  
JUNHUI SONG ◽  
XUESONG FU ◽  
YUXIAN ZHAO ◽  
WENLONG ZHOU

This paper describes the effect of hot extrusion on the microstructure and mechanical properties of electromagnetic continuous cast (EMC) AZ31 alloy. The microstructure, mechanical properties and fracture surfaces of AZ31 alloy before and after extrusion were investigated. The results demonstrate that extrusion processing gives rise to a strong basal texture. The grains are significantly refined and the average grain size of localized fine grain area is 2μm. Compared with EMC ingots, as-extruded specimens have much finer grain size and more uniform microstructure, and the second phase ( Mg 17 Al 12) becomes smaller and distributes more uniformly. The mechanical properties of the deformed AZ31 were improved after hot-extrusion. When the extrusion ratio was 10, the yield strength, ultimate tensile strength and reduction in cross-sectional area of as-extruded AZ31 alloy were 248MPa, 306MPa and 28.44%, which were respectively enhanced by 78.4%, 41% and 45.25%, compared with those of as-cast samples. With the increase of extrusion ratio, the grain refining effect was more significant and the microstructure was more uniform. The yield strength, ultimate tensile strength and reduction in cross-sectional area increased obviously with increasing the extrusion ratio. The observation on fracture surfaces demonstrates that the fracture mode changes from ductile-brittle fracture to ductile fracture after extrusion.


2017 ◽  
Vol 894 ◽  
pp. 21-24 ◽  
Author(s):  
S.Nю Ab Rahim ◽  
Mohd Amri Lajis

In the present work, aluminum AA6061 chip metals were extruded by hot extrusion and the effect of extrusion parameters on the mechanical properties and surface integrity were investigated. The objective of the present studies it to analyze the mechanical and structural properties of 6061 after plastic consolidation by hot extrusion. Tensile test results showed that material extruded using temperature 550°C exhibit higher ultimate tensile strength (UTS) compared with temperature of 400°C. Fracture surfaces shown that ductile fracture mode occurred at condition 500°C and 2 hours, and brittle fracture occurred at condition 400°C.


Sign in / Sign up

Export Citation Format

Share Document