Improved Wear Resistance of Magnesium Alloy Irradiated by High-Intensity Pulsed Ion Beam at Lower Energy Density

2011 ◽  
Vol 314-316 ◽  
pp. 219-222
Author(s):  
Peng Li ◽  
Tian Xiang Peng

HIPIB irradiation experiment is carried out at lower energy density of 0.55 J/cm2 with shot number from 1 to 10, and dry sliding wear behavior is investigated in order to explore the low energy-modification of magnesium alloy by HIPIB. It is found that HIPIB irradiation leads to the increase in surface hardness and therefore the improvement in wear resistance compared with the original sample. The improved wear resistance is mainly ascribed to the enhanced surface hardness induced by HIPIB irradiation.

2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


2019 ◽  
Vol 26 (07) ◽  
pp. 1850217 ◽  
Author(s):  
O. ÇOMAKLI ◽  
A. F. YETIM ◽  
B. KARACA ◽  
A. ÇELIK

The 31CrMoV9 steels were plasma nitrided under different gas mixture ratios to investigate an influence of nitrogen amount on wear behavior. The structure, mechanical and tribological behavior of untreated and nitrided 31CrMoV9 steels were analyzed with X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), microhardness device, 3D profilometer and pin-on-disk wear tester. The analysis outcomes displayed that the compound layer consists of nitride phases (Fe2N, Fe3N, Fe4N and CrN). Additionally, the thickness of the compound layers, surface hardness and roughness increased with increasing nitrogen amount in the gas mixture. The highest friction coefficient value was obtained at nitrogen amount of 50%, but the lowest value was seen at nitrogen amount of 6%. It was observed that wear resistance of 31CrMoV9 steel improved after plasma nitriding, and the best wear resistance was also obtained from plasma nitrided sample at the gas mixture of 94% H[Formula: see text]% N2.


2021 ◽  
Vol 118 (6) ◽  
pp. 614
Author(s):  
Chellamuthu Ramesh Kumar ◽  
Subramanian Baskar ◽  
Ganesan Ramesh ◽  
Pathinettampadian Gurusamy ◽  
Thirupathy Maridurai

In this research, investigations were carried out on Al6061 base alloy with the changing weight percentage of silicon carbide (SiC) and boron carbide (B4C) with keeping the amount of talc constant. The main objective of this present study was to improve the wear resistance of aluminum alloy using SiC/B4C/talc ceramic particles using stir-casting technique and how the eco-friendly talc content influencing the solid lubricity during the abrasion process. The experiments were conducted via orthogonal array of L27 using Taguchi’s method. The optimum value along with the coefficient of friction was obtained on the basis of grey relational equations and ANOVA, which helped in analysis of most influential input parameters such as applied load, sliding speed, sliding distance and percentage of reinforcement. Conformation tests were performed for the purpose of validation of the experimental results. The specimens were analyzed using scanning electron microscope (SEM) with EDX for micro structural studies. The SiC, B4C and talc presence in the composite helped to improve the mechanical properties, according to the results. The presence of solid lubricant talc as reinforcement to the aluminum hybrid composite reduced the wear properties and decreased the co-efficient friction. These wear resistance improved aluminum metal matrix composites could be used in automobile, defense and domestic applications where high strength and wear resistance required with lesser specific weight.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 296 ◽  
Author(s):  
Chao Sun ◽  
Nannan Lu ◽  
Huan Liu ◽  
Xiaojun Wang ◽  
Xiaoshi Hu ◽  
...  

In this study, the dry sliding wear behaviors of SiC particle reinforced AZ91D matrix composites fabricated by stirring casting method were systematically investigated. The SiC particles in as-cast composites exhibited typical necklace-type distribution, which caused the weak interface bonding between SiC particles and matrix in particle-segregated zones. During dry sliding at higher applied loads, SiC particles were easy to debond from the matrix, which accelerated the wear rates of the composites. While at the lower load of 10 N, the presence of SiC particles improved the wear resistance. Moreover, the necklace-type distribution became more evident with the decrease of particle sizes and the increase of SiC volume fractions. Larger particles had better interface bonding with the matrix, which could delay the transition of wear mechanism from oxidation to delamination. Therefore, composites reinforced by larger SiC particles exhibited higher wear resistance. Similarly, owing to more weak interfaces in the composites with high content of SiC particles, more severe delamination occurred and the wear resistance of the composites was impaired.


2017 ◽  
Vol 740 ◽  
pp. 9-16
Author(s):  
Ahmed Sahib Mahdi ◽  
Mohammad Sukri Mustapa ◽  
Mahmod Abd Hakim Mohamad ◽  
Abdul Latif M. Tobi ◽  
Muhammad Irfan Ab Kadir ◽  
...  

The micro-hardness and compression of recycling aluminum alloy AA6061 were investigated as a function of the different microstructure and constituent powder metallurgy method. Five specimens were selected to investigate the compression strength and microhardness. The first, as fabricated specimen (as compacted), the second was as heat treated by quenching and aging process. Three specimens were mixed with Graphite particles as a reinforcement material. Compression strength values were tested for the specimens as fabricated and heat treated which were 195 and 300 MPa, respectively. The improvement ratio was 52% for the specimen as heat treated. On the other hand, high wear resistance was given by the specimen as heat treated, whereas, the lower wear strength was at the specimen mixed with 4.5% Graphite. These results were attributed to that the wear resistance related to the microhardness value.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Tuba Yener ◽  
Azmi Erdogan ◽  
Mustafa Sabri Gök ◽  
Sakin Zeytin

Abstract The aim of this study was to investigate the effect of low-temperature aluminizing process on the microstructure and dry sliding wear properties of Mirrax steel. Low-temperature aluminizing process was applied on Mirrax steel at 600, 650, and 700 °C for 2, 4, and 6 h. The packs for the process were prepared using pure aluminum powder as aluminum deposition source. Ammonium chloride NH4Cl and Seydisehir Al2O3 powder were used as the activator and the inert filler, respectively. Scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis were applied for characterization of the coating surfaces. The through-thickness variation in the layer microstructure was determined and it was found to vary between 1 µm and 45 µm which increased with higher process temperature and time. After the deposition process, the coating layer hardness increased to 1000 HVN, whereas the hardness of the matrix was 250 HVN. The wear tests were performed using a ball-on-disc tribometer under 5 N load at room temperature and 500 °C on aluminized and untreated Mirrax steel. In both room temperature and high-temperature wear tests, it was determined that the aluminizing process increased the wear resistance of Mirrax steel. Increasing aluminizing time and temperature also increased the wear resistance. The uncoated and thin-coated samples generally exhibited wear in the form of plastic deformation and adhesion related ruptures. A high degree of tribological layer was observed on the wear trace on samples with high coating thickness, especially in high-temperature tests. Therefore, the volume losses in these samples were induced by fatigue crack formation and delamination.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1618 ◽  
Author(s):  
Zhaohuan Song ◽  
Songhao Zhao ◽  
Tao Jiang ◽  
Junjie Sun ◽  
Yingjun Wang ◽  
...  

In this work, a multiphase microstructure consisting of nanobainte, martensite, undissolved spherical carbide, and retained blocky austenite has been prepared in an Al-alloyed high carbon steel. The effect of the amount of nanobainite on the dry sliding wear behavior of the steel is studied using a pin-on-disc tester with loads ranging from 25–75 N. The results show that, there is no significant differences in specific wear rate (SWR) for samples with various amounts of nanobainite when the normal load is 25 N. While, the SWR firstly decreases and then increases with increasing the amount of nanobainite, and the optimum wear resistance is obtained for samples with 60 vol.% nanobainite, when the applied load increases to 50 and 75 N. The improved wear resistance is attributed to the peak hardness increment resulted from the transformation of retained austenite to martensite, work hardening, along with amorphization and nanocrystallization of the worn surface. In addition, the highest toughness of the samples with 60 vol.% nanobainite is also proven to play a positive role in resisting sliding wear. EDS (energy dispersion spectrum) and XRD (X-ray diffraction) examinations reveal that the predominant failure mechanism is oxidative wear.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


Sign in / Sign up

Export Citation Format

Share Document