A Current Reused Divided-by-Two Frequency Divider

2013 ◽  
Vol 660 ◽  
pp. 119-123
Author(s):  
Xiao Shi ◽  
Fu Qing Huang ◽  
Zhi Lin Liu ◽  
Jian Hui Wu

In this paper, a low power dissipation divide-by-two frequency divider is presented. The master latch and the slave latch of the divide-by-two frequency divider are stacked in cascode to reuse the current. The frequency divider can operate with only half the current of a conventional divider. A divide-by-two frequency divider based on the proposed topology is designed and simulated in a 0.18μm 1P6M CMOS process. Simulation results show the frequency divider can operate up to 11GHz with only 0.66mW power dissipation under 1.8V supply voltage. And it also demonstrates good phase noise performance.

2020 ◽  
Vol 11 (1) ◽  
pp. 129
Author(s):  
Po-Yu Kuo ◽  
Ming-Hwa Sheu ◽  
Chang-Ming Tsai ◽  
Ming-Yan Tsai ◽  
Jin-Fa Lin

The conventional shift register consists of master and slave (MS) latches with each latch receiving the data from the previous stage. Therefore, the same data are stored in two latches separately. It leads to consuming more electrical power and occupying more layout area, which is not satisfactory to most circuit designers. To solve this issue, a novel cross-latch shift register (CLSR) scheme is proposed. It significantly reduced the number of transistors needed for a 256-bit shifter register by 48.33% as compared with the conventional MS latch design. To further verify its functions, this CLSR was implemented by using TSMC 40 nm CMOS process standard technology. The simulation results reveal that the proposed CLSR reduced the average power consumption by 36%, cut the leakage power by 60.53%, and eliminated layout area by 34.76% at a supply voltage of 0.9 V with an operating frequency of 250 MHz, as compared with the MS latch.


2012 ◽  
Vol 496 ◽  
pp. 527-533
Author(s):  
Na Bai ◽  
Hong Gang Zhou ◽  
Qiu Lei Wu ◽  
Chun Yu Peng

In this paper, ring oscillator phase noise caused by power supply noise (PSN) with deterministic frequency is analyzed. Results show that phase noise caused by deterministic noise is only an impulse series. Compared with the jitter caused by PSN, the phase noise caused by PSN with deterministic frequency contributes considerably less to total phase noise performance. To verify the analysis method, a CMOS ring oscillator is designed and fabricated using SMIC 0.13 µm CMOS process. Comparisons between the analytical results and measurements prove the accuracy of the proposed method


2014 ◽  
Vol 981 ◽  
pp. 66-69
Author(s):  
Ming Yuan Ren ◽  
En Ming Zhao

This paper presents a design and analysis method of a bandgap reference circuit. The Bandgap design is realized through the 0.18um CMOS process. Simulation results show that the bandgap circuit outputs 1.239V in the typical operation condition. The variance rate of output voltage is 0.016mV/°C? with the operating temperature varying from-60°C? to 160°C?. And it is 3.27mV/V with the power supply changes from 1.8V to 3.3V.


2019 ◽  
Vol 28 (08) ◽  
pp. 1950125
Author(s):  
Jianqun Ding ◽  
Lijun Huang ◽  
Xianwu Mi ◽  
Dajiang He ◽  
Shenghai Chen ◽  
...  

In this paper, a full PMOS Colpitts quadrature voltage-controlled oscillator (QVCO) topology, suitable for low supply voltage and low power dissipation, is presented. For an enhanced voltage swing under a low supply voltage, the capacitive-feedback technique is employed. Quadrature coupling is achieved by employing direct bulk coupling technique, leading to reduction in both power and chip area. The proposed QVCO covers a 5% tuning range between 2.325 GHz and 2.435 GHz, and the phase noise is [Formula: see text]128.2 dBc/Hz at 1-MHz offset from the 2.34-GHz carrier while consuming only 0.535 mW from 0.55-V supply voltage, yielding a figure-of-merit (FoM) of 198 dBc/Hz.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Florence Choong ◽  
Mamun Ibne Reaz ◽  
Mohamad Ibrahim Kamaruzzaman ◽  
Md. Torikul Islam Badal ◽  
Araf Farayez ◽  
...  

Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL.


2013 ◽  
Vol 534 ◽  
pp. 220-226 ◽  
Author(s):  
Nobukazu Takai ◽  
Takashi Okada ◽  
Kenji Takahashi ◽  
Hajime Yokoo ◽  
Shunsuke Miwa ◽  
...  

Mobile equipment such as organic-EL display, digital still camera and so on re-quire both positive and negative power supply voltage to obtain high quality. Single InductorMultiple-Output (SIMO) DC-DC converter can provide a pair of positive and negative outputvoltages with only one external inductor. This paper describes SIMO DC-DC Converter usingproposed current-mode control (CMC) circuit. The proposed CMC circuit realizes high responsespeed for the change of load current. Spectre simulations with 0.18m CMOS process parameterare performed to verify the validity of the proposed converter. The simulation results indicatethat the proposed converter has higher response time compared with conventional converter.


Power dissipation of CMOS IC is a key factor in low power applications especially in RFID tag memories. Generally, tag memories like electrically erasable programmable read-only memory (EEPROM) require an internal clock generator to regulate the internal voltage level properly. In EEPROM, oscillator circuit can generate any periodic clock signal for frequency translation. Among different types of oscillators, a current starved ring oscillator (CSRO) is described in this research due to its very low current biasing source, which in turn restrict the current flows to reduce the overall power dissipation. The designed CSRO is limited to three stages to reduce the power dissipation to meet the specs. The simulated output shows that, the improved CSRO dissipates only 4.9 mW under the power supply voltage (VDD) 1.2 V in Silterra 130 nm CMOS process. Moreover, this designed oscillator has the lowest phase noise -119.38 dBc/Hz compared to other research works. In addition, the designed CSRO is able to reduce the overall chip area, which is only 0.00114 mm2. Therefore, this proposed low power and low phase noise CSRO will be able to regulate the voltage level successfully for low power RFID tag EEPROM.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 103
Author(s):  
P Sahithi ◽  
K Hari Kishore ◽  
E Raghuveera ◽  
P Gopi Krishna

The paper describes a voltage level shifter for power efficient applications which is simulated in tanner spice tool using 45nm technology. The conservative voltage level shifter is designed by using 6 transistors. The voltage level shifter cell generally used for shifting the voltage range of the signal from one voltage domain to another. This is required when the chip operate at multiple voltage domains. The circuit parameters like leakage voltage and average power dissipation are calculate for this circuit. Mainly level shifter consists of two voltage levels. One is low logic supply voltage (VDDL) another one is high logic supply voltage (VDDH). The simulation results of proposed level shifter with Wilson current mirror by 45nm technology for the input frequency of 1MHZ, the power dissipation of 0.177nW with 3db gain of 9.78.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450009
Author(s):  
Sheng-Lyang Jang ◽  
Tsung-Chao Fu

The effect of ac hot-carrier stress on the performance of a wide locking range divide-by-4 injection-locked frequency divider (ILFD) is investigated. The ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process. The ILFD uses direct injection MOSFETs for coupling external signal to the resonators. Radio frequency (RF) circuit parameters such as oscillation frequency, tuning range, phase noise, and locking range before and after RF stress at an elevated supply voltage for 5 h have been examined by experiment. The measured locking range, operation range and phase noise after RF stress shows significant degradation from the fresh circuit condition.


Sign in / Sign up

Export Citation Format

Share Document