Growth of Highly C-Axis Oriented AlN Films at Water Cooling Condition

2013 ◽  
Vol 718-720 ◽  
pp. 20-24
Author(s):  
J. Yang ◽  
X.Q. Jiao ◽  
R. Zhang ◽  
H. Zhong ◽  
Y. Shi ◽  
...  

In this work, the aluminum nitride (AlN) thin film with highly c-axis orientation was prepared successfully at water cooling condition by RF sputtering. The influence of water cooling on the crystalline quality of AlN thin film is researched. The crystalline characteristics and microstructure of AlN thin films deposited on Si (111) and Mo/Si (111) were researched by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). The results indicated that highly c-axis AlN films can be synthetized at water cooling condition. The AlN film deposited on Mo thin film is titled to the surface, when that is perpendicular to the silicon substrate. Different models are proposed to explain the growth behaviors of AlN thin films on the two kinds of substrates.

2013 ◽  
Vol 302 ◽  
pp. 8-13
Author(s):  
Shun Fa Hwang ◽  
Wen Bin Li

PZT thin film was fabricated by using RF-sputtering process, and platinum was used as bottom electrodes. The sputtering gases were Ar:O2=25:0 sccm, Ar:O2=20:5 sccm, or Ar:O2=15:10 sccm. After sputtering, the PZT film was annealed for 5 minutes under O2 gas environment and at the temperature of 600 0C, 650 0C, 700 0C or 750 0C. To judge the quality of the deposited PZT film, its physical properties and electric properties were evaluated. The results indicate that the best crystallization temperature of PZT thin film is about 700 0C. Also, the roughness of the PZT thin film becomes larger with the increasing of annealing temperature. By adding more oxygen in the sputtering gas, one could have better crystallization of the PZT film. As for the electrical properties, the leakage current of PZT thin film increases with the increasing of annealing temperature. Furthermore, the ferroelectric property is affected by the crystallization amount of perovskite, the thickness of PZT thin film, and the diffusion situation between the bottom electrode and the PZT film.


1989 ◽  
Vol 03 (06) ◽  
pp. 465-470 ◽  
Author(s):  
MASAYUKI TSUKIOKA ◽  
TASUKU MASHIO ◽  
MASAJI SHIMAZU ◽  
TAKESHI NAKAMURA

Using rf-sputtering method, modified BNN ( Ba 2 NaNb 5 O 15) thin-films, which are highly aligned, were prepared on a polished surface of a stainless steel plate and on a polished silicon wafer. It was found that preferably aligned thin-films were successfully obtained only when modified Nb-rich BNN target was used. Preferable orientation of these thin-films was confirmed by X-ray diffraction measurement. In order to find the correlation between preferable orientation and separation from plasma center, X-ray measurement was carried out at several points on the thin-film sputtered on a long stainless steel substrate (5×100 mm ). The result indicated that preferable orientation was dominant near the position of plasma center. In order to distinguish whether the strong X-ray peak observed in the preferably aligned BNN thin-film is due to (200) peak of Nb 2 O 5 or (440) peak of BNN, X-ray measurements and the following quantitative analyses; fluorescent X-ray, ICP (Induced Coupled Radio Frequency Plasma) and an Atomic Absorption Method, were carried out for films sputtered from Nb-rich BNN target. The results reveal that the thin-films include considerable quantity of barium and sodium. This suggests that the highly aligned thin-film is composed of modified BNN and not Nb 2 O 5.


2007 ◽  
Vol 558-559 ◽  
pp. 975-978
Author(s):  
L.V. Tho ◽  
K.E. Lee ◽  
Cheol Gi Kim ◽  
Chong Oh Kim ◽  
W.S. Cho

Nanocrystalline CoFeHfO thin films have been fabricated by RF sputtering method. Co52Fe23Hf10O15 thin film is observed, exhibit good magnetic properties with magnetic coercivity (Hc) of 0.18 Oe; anisotropy fild (Hk) of 49 Oe; saturation magnetization (4лMs) of 21 kG, and electrical resistivity (ρ) of 300 01cm. The frequency response of permeability of the film is excellent. The effect of microstructure on the electrical and magnetic properties of thin film was studied using X-ray diffraction (XRD) analysis and conventional transmission electron microscopy (TEM). The results showed that excellent soft magnetic properties were associated with granular nannoscale grains of α-CoFe and α-Co(Fe) phases.


2001 ◽  
Vol 16 (9) ◽  
pp. 2463-2466 ◽  
Author(s):  
Yong Kwan Kim ◽  
Kyeong Seok Lee ◽  
Sunggi Baik

Epitaxial (Pb1−xSrx)TiO3 (PST, x = 4 0.0–0.24) thin films were grown on MgO(001) single-crystal substrates by pulsed laser deposition. General x-ray diffraction techniques including θ–2θ scan and rocking curve were used to determine lattice constants, degree of c-axis orientation, and crystal quality of the tetragonal thin films. The degree of c-axis orientation in the epitaxial PST films increased as Sr concentration (x) increased, which in turn induces the systematic change in the Curie temperature as well as the transformation strain at and below the Curie temperature. An inverse relation between the c-domain abundances and the transformation strains is established.


2012 ◽  
Vol 518-523 ◽  
pp. 3772-3779 ◽  
Author(s):  
Fatini Sidek ◽  
Anis Nurashikin Nordin ◽  
Raihan Othman

High quality ZnO thin films are required to produce CMOS SAW resonators operating with low losses and high Q. This work intends to develop high performance CMOS SAW resonators through optimization of both the quality of the ZnO and the design of the SAW resonator. Zinc oxide was chosen for this work as the piezoelectric material due to its superior acoustic propagation properties and compatibility with integrated circuit fabrication techniques. ZnO has demonstrated good performance characteristics for a variety of piezoelectric devices. For optimization of the quality of the deposited ZnO thin film, different RF-sputtering conditions will be used to investigate which condition produces the best piezoelectric quality of the ZnO thin film. The experiments were carried using Taguchi optimization method, which studies a large number of variables with a small number of experiments.


2013 ◽  
Vol 795 ◽  
pp. 403-406 ◽  
Author(s):  
Nur Sa’adah Muhamad Sauki ◽  
Sukreen Hana Herman ◽  
Mohd Hanafi Ani ◽  
Mohamad Rusop

Zinc oxide (ZnO) thin films were deposited on teflon substrates by RF magnetron sputtering at different substrate temperature. The effect of substrate temperature on ZnO thin films electrical and structural properties were examined using current-voltage (I-V) measurement, and x-ray diffraction (XRD) It was found that the electrical conductivity and resistivity of the ZnO thin film deposited at 40°C was the highest and lowest intensity accordingly. This was supported by the crystalline quality of the films from the x-ray diffraction (XRD) results. The XRD pattern showed that the ZnO thin film deposited at 40°C has the highest intensity with the narrowest full-width-at-half-maximum indicating that the film has the highest quality compared to other thin film.


1996 ◽  
Vol 433 ◽  
Author(s):  
Y. M. Kang ◽  
J. K. Ku ◽  
S. Baik

AbstractFerroelectric Pb1−xLaxTiO3 (PLT, x = 0.00 ˜ 0.28) thin films have been prepared on MgO(001) substrates using pulsed laser deposition. The degree of c-axis orientation in PLT films increased as the La concentration (x) increased with systematic changes in lattice constants and transformation strains. For x ≥ 12, the PLT films showed full c-axis orientation.In order to understand why the domain evolution in PLT films changes with the La concentration, we have conducted high temperature X-ray diffraction to simulate the cooling process during which the domain structure is evolved. Lattice constants, degree of c-axis orientation, crystal quality of PLT films were characterized as a function of temperature. Lattice constants along substrate normal direction showed similar characteristics with those of powder. The degree of c-axis orientation just after the phase transformation at the Curie temperature also increased with La concentration. The crystal quality, which is quantified by the line width of diffraction peak, is insensitive to La concentration in paraelectric phase. However, it shows significant variation after the domain structure is evolved.


2013 ◽  
Vol 284-287 ◽  
pp. 324-328
Author(s):  
Tao Hsing Chen ◽  
Tzu Yu Liao

This study utilizes radio frequency magnetron sputtering(RF-sputtering) to deposit GZO transparent conductive film and Ti thin film on the same corning glass substrate, then treats GZO/Ti thin film with rapid thermal annealing. The annealing temperature is 300, 500 and 550°C, respectively. Moreover, the effects of process parameters on resistivity and optical properties are investigated. The deposited rate, microstructure, thickness and Optical transmission of Ti:GZO thin film are performed. For example, the thicknesses of films were determined by -step profilometer. The crystalline characteristics of thin films were investigated by X-ray diffraction (XRD). Ga and Ti concentration in ZnO film were determined by energy dispersive X-ray spectroscopy (EDS). The electrical properties of the Ti:GZO thin films were measured by Four point probe. The optical properties of Ti:GZO thin films were examined using UV–vis spectrophotometer. The results show that the transmittance of Ti:GZO thin film exhibited an excellent transparency in the visible light field. The resistivity of Ti:GZO decrease with increasing annealing temperature.


2016 ◽  
Vol 53 (3) ◽  
pp. 57-66
Author(s):  
A. Cvetkovs ◽  
O. Kiselova ◽  
U. Rogulis ◽  
V. Serga ◽  
R. Ignatans

Abstract The extraction-pyrolytic method has been applied to produce the ZnO and CdO-ZnO thin films on glass and quartz glass substrates. According to X-ray diffraction measurements, the ZnO and CdO phases have been produced with an average size of crystallites about 8–42 nm in the films. The thickness of the layers measured by a profilometer has been up to 150 nm. The surface morphology measurements show that the surface of the films may be rough and non-continuous. The SEM results confirm the dependence between the preparation procedure and the quality of the thin film.


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


Sign in / Sign up

Export Citation Format

Share Document