Studies on Thermal and Mechanical Properties of Polybenzoxazine Modified with Succinic Acid

2013 ◽  
Vol 747 ◽  
pp. 253-256 ◽  
Author(s):  
Sunan Tiptipakorn ◽  
Piriyathorn Suwanmala ◽  
Kasinee Hemvichian

Polybenzoxazine (PBA-a), a novel type of phenolic resin, possesses many outstanding properties, i.e. good mechanical strength, electrical insulation, dimensional stability, resistance against many types of solvents, flame retardation, and low smoke emission from burning. However, shortcoming of this material is from its brittleness. In this study, the rigidity of polybenzoxazine was improved by adding succinic acid (SA) as plasticizer. The content of SA was varied from 0 to 50 phr. The thermal properties were determined by Differential Scanning Calorimeter (DSC) and Thermogravimetric Analyzer (TGA), while the mechanical properties were analysed by Universal Testing Machine (UTM) and Microhardness tester. In addition, the results that the glass transition temperature (Tg) of PBA-a was decreased with increasing the amount of SA, i.e. decreasing from 168°C (0 phr) to 121°C (50 phr). Furthermore, the degradation temperature at 5 % weight loss (Td5%) was decreased from 328°C (0 phr) to 240°C (50 phr). It could be noticed that the char yield of the polymer at 800°C had no significant change (in the range of 30-33%) when SA was added. The polybenzoxazine exhibited softening decreased of hardness from 39.8 MPa (at 0 phr) to 9.62 MPA (at 50 phr).

2016 ◽  
Vol 707 ◽  
pp. 8-12
Author(s):  
Keeratikarn Kuttiwong ◽  
Jantrawan Pumchusak

In this work, the improvement of thermal and ablative properties of the phenolic resin by the addition of silicon carbide (SiC) and montmorillonite (MMT) were studied. The phenolic composites were fabricated by hot compression. The thermal stabilities, mechanical properties and ablative properties of the neat phenolic resin and the SiC/MMT phenolic composites were examined using a Lloyd universal testing machine, thermogravimetric analysis (TGA) and ablation tests (an oxyacetylene torch), respectively. Mass ablation rates were measured after flame exposure. The results showed that SiC/MMT provided the higher thermal stabilities and lower ablation rates to the phenolic resin.


2016 ◽  
Vol 705 ◽  
pp. 87-92
Author(s):  
Sunan Tiptipakorn ◽  
Ketsarin Puengbankoh ◽  
Sarawut Rimdusit ◽  
Phiriyatorn Suwanmala ◽  
Kasinee Hemvichian ◽  
...  

In this study, the composites for wood substitution made of benzoxazine filled with rubber wood-flour were fabricated. The wood flour contents was varied from 0 to 30 wt%. The effects of gamma radiation on the thermal and mechanical properties of wood-flour filled polybenzoxazine were determined. The different radiation dose (i.e. 0, 10, 20, and 30 kGy) was applied to the fabricated samples. The differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) were used to evaluate glass transition temperature (Tg) and degradation temperature (Td), respectively. While the flexural strength was determined using Universal Testing Machine (UTM). It could be noted that the increase of radiation dose provided the decrease of Td. Moreover, the values of Tg, flexural strength, and water absorption reveals the similar trend with the maximum point at 20 kGy of radiation dose.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1303
Author(s):  
Michael Seidenstuecker ◽  
Thomas Schmeichel ◽  
Lucas Ritschl ◽  
Johannes Vinke ◽  
Pia Schilling ◽  
...  

This work aimed to determine the influence of two hydrogels (alginate, alginate-di-aldehyde (ADA)/gelatin) on the mechanical strength of microporous ceramics, which have been loaded with these hydrogels. For this purpose, the compressive strength was determined using a Zwick Z005 universal testing machine. In addition, the degradation behavior according to ISO EN 10993-14 in TRIS buffer pH 5.0 and pH 7.4 over 60 days was determined, and its effects on the compressive strength were investigated. The loading was carried out by means of a flow-chamber. The weight of the samples (manufacturer: Robert Mathys Foundation (RMS) and Curasan) in TRIS solutions pH 5 and pH 7 increased within 4 h (mean 48 ± 32 mg) and then remained constant over the experimental period of 60 days. The determination surface roughness showed a decrease in the value for the ceramics incubated in TRIS compared to the untreated ceramics. In addition, an increase in protein concentration in solution was determined for ADA gelatin-loaded ceramics. The macroporous Curasan ceramic exhibited a maximum failure load of 29 ± 9.0 N, whereas the value for the microporous RMS ceramic was 931 ± 223 N. Filling the RMS ceramic with ADA gelatin increased the maximum failure load to 1114 ± 300 N. The Curasan ceramics were too fragile for loading. The maximum failure load decreased for the RMS ceramics to 686.55 ± 170 N by incubation in TRIS pH 7.4 and 651 ± 287 N at pH 5.0.


2019 ◽  
Vol 7 (5) ◽  
pp. 311-320
Author(s):  
Umurhurhu Benjamin ◽  
Uguru Hilary

The mechanical properties of eggplant fruit (cv. Bello) harvested at physiological maturity stage were evaluated in three storage periods (3d, 6d and 9d). These mechanical parameters (rupture force, rupture energy and deformation at rupture point) were measured under quasi compression loading, using the Universal Testing Machine (Testometric model). The fruit’s toughness and rupture power were calculated from the data obtained from the rupture energy and deformation at rupture point. Results obtained showed that mechanical properties of the Bello eggplant fruit exhibited strong dependence on the storage period. The results showed that as the Bello fruit stored longer, its rupture force and rupture energy decreased from 812 N to 411 N, and 5.58 Nm to 3.11 Nm respectively. While the rupture power decreased from 1.095 W to 0.353 W. On the contrary, the toughness and deformation at rupture increased from 0.270 mJ/mm3 to 0.403 mJ/mm3, and 16.99 mm to 25.22mm respectively during the 9 days storage period. The knowledge of the mechanical properties of fruits is important for their harvest and post-harvest operations, therefore, information obtained from this study will be useful in the design and development of machines for the mechanization of eggplant production.


2012 ◽  
Vol 479-481 ◽  
pp. 1145-1150
Author(s):  
Xiao Feng Xu ◽  
Wen Bin Yao ◽  
Jiu Hua Xu ◽  
Wei Zhang

In order to get the physical mechanics of gingko,hickory nut and their stalks, microprocessor controlled electronic universal testing machine (WDW-5E) was used to study the basic physical characteristics,pulling resistance and cutting resistance of their stalk in different harvest time and moisture contents. The impact of physical mechanics of cones and stalks on the picking process were analyzed and some concrete suggestions were put forward in the paper. This experimental study provides an important theory basis on designing and manufacturing different cones picking machine.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2017 ◽  
Vol 732 ◽  
pp. 32-37 ◽  
Author(s):  
Ming He Wang ◽  
Xiao Dong Du ◽  
Yu Kun Li ◽  
Zhen Zhang ◽  
Hai Lin Su ◽  
...  

The as-cast microstructures and mechanical properties of Al-Si-Mg-Cu-Ti alloys with and without Sc were investigated by metallographic microscope, field emission scanning electron microscope, energy spectrum analysis, transmission electron microscope and universal testing machine. The result shows that adding 0.20wt.% Sc into the casting alloy can refine the grain, change the growth morphology from dendrite to fine equiaxed grain, and the morphology of eutectic Si by rough laminar structure into fine fibrous. The tensile strength of alloy with 0.20wt.% Sc is up to 304.4 MPa after T6 heat treated, which is close to that of 6061 forging aluminum alloy.


2014 ◽  
Vol 915-916 ◽  
pp. 992-995
Author(s):  
Shuang Liu ◽  
Wei Tan Cui ◽  
Hong Wu Zhang ◽  
Yong Quan Ma

The fracture reasons of 500kV high-voltage disconnectors hoops were analyzed. The fracture appearance, composition of chemical elements, metallographic, mechanical properties of the fractured hoops were investigated by ICP-AES, SEM, optical microscope, brinell hardness tester, universal testing machine. The test results that one reason is substandard products of this batch hoop. The composition of chemical elements and mechanical properties is fails to comply with applicable standards prescribed and the casting defects are found. Another reason is that the large pre-tightening force and tightens reverse order.


2013 ◽  
Vol 446-447 ◽  
pp. 312-315
Author(s):  
Ramaraju Ramgopal Varma ◽  
Abdullah Bin Ibrahim ◽  
B. Ravinder Reddy

The present research paper aims in evaluating the strength of the welded AA6351 alloy plates of 6 mm thick by using friction stir welding technique at different rotational speeds The applied welding technique is capable of achieving the mechanical properties of the alloy close to that of the original alloy. In the present investigation, the speeds of the spindle were varied from 1100 rpm to 1500 rpm with a constant transverse speed of 20 mm/min. The tensile strength of the joints is determined by an universal testing machine. The results from the present investigation show that the values of the yield strength were very much closer to the values of the AA6351Alloy prior to welding. It has been found from the experiments that the strength of the joints increases with the increase in the rotational speed; however, the same is decreasing after achieving certain speed.


2014 ◽  
Vol 917 ◽  
pp. 307-316 ◽  
Author(s):  
Norwahyu Jusoh ◽  
Lau Kok Keong ◽  
Azmi Mohd Shariff

Symmetric and asymmetric polysulfone membranes were fabricated using different of solvents; N-methyl-pyrrolidone (NMP), Tetrahydrofuran (THF) and Dimethylacetamide (DMAC) at different polymer concentration (15 and 20%) to study the influence of varying type of solvents and polymer concentration in membrane fabrication. The membranes were characterized using Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analyzer (TGA), Universal Testing Machine (UTM) and Fourier Transform Infra-Red (FTIR).The results disclosed that the symmetric, higher polymer concentration membrane contributed to better thermal and mechanical stabilities. PSF/THF membrane showed good mechanical strength while PSF/DMAC membrane illustrated great thermal stability. 20% of polymer concentration and PSF/THF membrane led to the thicker skin layer and dense structure formation.


Sign in / Sign up

Export Citation Format

Share Document