Research on Synthesis of Hexafluoropropylene

2013 ◽  
Vol 773 ◽  
pp. 445-449
Author(s):  
Jian Zhao Qin ◽  
Fang Fang Shan ◽  
Yao Qing Chen

The synthesis of hexafluoropropylene oxide in fixed-bed reactor using HFP as raw materials and molecular oxygen as oxidant is studied in the present paper. The selectivity of HFPO on the Ag/γ-Al2O3 catalyst prepared by impregnation can get 41.8%. The influence of the Ag/γ-Al2O3 catalyst modified by impregnation-sedimentation method and first group metal salts on synthesis reaction was investigated, as well as process conditions.

2021 ◽  
Vol 323 ◽  
pp. 00003
Author(s):  
Artur Bieniek ◽  
Wojciech Jerzak ◽  
Aneta Magdziarz

Biomass pyrolysis is an advanced process which leads to obtaining products as chars, primary tars and gases. Depending on pyrolysis conditions and reactor construction, the pyrolysis could be divided into three categories: slow, intermediate and fast. This work concerns the experimental analysis of an intermediate pyrolysis of biomass residues in a fixed bed reactor. As raw materials, pine bark and wheat straw were selected. Experiments were carried out at three temperatures: 400, 500 and 600 °C under constant volume flow rate of inert gas equal to 100 ml/min. Biomass samples were kept for 150 seconds in the hot zone. The main goal was to compare yields, elemental composition, and calorific values of received products under studied process conditions. The ultimate analysis of chars and organic fractions of oils was performed. Obtained results from ultimate analysis allowed to determine higher heating values by a theoretical correlation. The products of pyrolysis obtained at 600 °C characterized by the most energetic parameters. The higher heating value for organic fraction of tars was 31.62 MJ/kg while for char was 29.47 MJ/kg.


2014 ◽  
Vol 16 (2-3) ◽  
pp. 209 ◽  
Author(s):  
A. Diéguez-Alonso ◽  
A. Anca-Couce ◽  
F. Behrendt

<p>Consolidated industrial application of biomass thermochemical conversion processes, such as pyrolysis and gasification, requires the development and application of control and optimization techniques. To this end, on-line process characterization, regarding mainly product distribution and composition under similar conditions as the ones encountered in industrial applications is needed. In the present study, slow pyrolysis and updraft gasification of thermally thick particles in a technical scale fixed-bed reactor are carried out under several process conditions. Different raw materials are used: pine wood chips, beech-wood spheres and cellulose. In pyrolysis, the increasing influence of transport phenomena in the conversion process due to the use of a technical-scale reactor and thermally thick wood particles is analysed through the temperature distribution inside the bed during the process together with the char properties characterization taken from four different positions inside the bed. The influence of process conditions, such as the N<sub>2</sub> flow rate, on the products composition and distribution is also analysed. In gasification, the influence of the air to fuel ratio on the product gas composition is characterized, as well as the qualitative evolution of polycyclic aromatic hydrocarbons (PAH) representative species in the volatiles vapours by applying laser-induced fluorescence (LIF).</p>


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1027
Author(s):  
Binxiang Cai ◽  
Huazhang Liu ◽  
Wenfeng Han

Fe2O3-based catalysts were prepared by solution combustion synthesis (SCS) with metal nitrates (Fe, K, Al, Ca) as the precursors and glycine as the fuel. The activities of catalysts were evaluated in terms of ammonia synthesis reaction rate in a fixed bed reactor similar to the industrial reactors. The results indicate that the precursor of catalyst prepared by SCS is Fe2O3 which facilitates the high dispersion of promoters to provide high activity. The catalysts exhibit higher activity for ammonia synthesis than that of traditional catalysts, and the reaction rate reaches 138.5 mmol g−1 h−1. Fe2O3 prepared by SCS could be favorable precursor for ammonia synthesis catalyst. The present study provides a pathway to prepare catalyst for ammonia synthesis.


Author(s):  
Agus Budianto ◽  
Ayuni Rita Sari ◽  
Yohana Winda Monica ◽  
Erlinda Ningsih ◽  
Esthi Kusdarini

<table class="NormalTable"><tbody><tr><td width="200"><span class="fontstyle0">The development of population growth causes of fuels need increasing. Because of<br />that reason, it necessary to create alternative fuels which are friendly to the<br />environment to meet the fuels need in society. Fossil fuel is a non-renewable fuel.<br />Biofuel as an alternative fuel can be taken as a solution to solve this problem. The<br />reviewd aim was to determine the effect of raw materials used on yield product and<br />the different effects of temperature and catalysts on the yield of special materials<br />(gasoline, diesel, kerosene) biofuel. Biofuel production started from the<br />preparation of raw materials, catalylic, and catalytic cracking process using a<br />fixed bed reactor. Raw materials greatly affected yield product. The highest yield<br />products were being gotten from RBDPS raw materials of 93.29%. Biofuel from<br />used cooking oil and concentration of red sludge catalyst of 15% produced the<br />highest biofuel with gasoline compound of 73.86% and kerosene compound of<br />26.14%. Biofuel from camelina oil with ZSM-5-Zn catalyst concentration of 30%<br />produced the highest gasoline yield of 75.65%.</span></td></tr></tbody></table>


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1970 ◽  
Author(s):  
Jayanto Kumar Sarkar ◽  
Qingyue Wang

In the present study, a series of laboratory experiments were conducted to examine the impact of pyrolysis temperature on the outcome yields of waste coconut shells in a fixed bed reactor under varying conditions of pyrolysis temperature, from 400 to 800 °C. The temperature was increased at a stable heating rate of about 10 °C/min, while keeping the sweeping gas (Ar) flow rate constant at about 100 mL/min. The bio-oil was described by Fourier transform infrared spectroscopy (FTIR) investigations and demonstrated to be an exceptionally oxygenated complex mixture. The resulting bio-chars were characterized by elemental analysis and scanning electron microscopy (SEM). The output of bio-char was diminished pointedly, from 33.6% to 28.6%, when the pyrolysis temperature ranged from 400 to 600 °C, respectively. In addition, the bio-chars were carbonized with the expansion of the pyrolysis temperature. Moreover, the remaining bio-char carbons were improved under a stable structure. Experimental results showed that the highest bio-oil yield was acquired at 600 °C, at about 48.7%. The production of gas increased from 15.4 to 18.3 wt.% as the temperature increased from 400 to 800 °C. Additionally, it was observed that temperature played a vital role on the product yield, as well as having a vital effect on the characteristics of waste coconut shell slow-pyrolysis.


Author(s):  
Frédéric Paviet ◽  
Olivier Bals ◽  
Gérard Antonini

Gasification is an attractive technology for waste thermal treatment. The successful design and modelling of a gasifier requires reliable kinetic data. The purpose of this work is to study the steam gasification kinetics of chars produced by municipal wastes pyrolysis. The municipal solid wastes (MSW) are modelled as a mixture of four organic constituents: paper, wood, plastics, and vegetables. The various char samples are obtained by pyrolysis of each waste constituent, in a fixed bed reactor at 1000°C, in order to minimize their volatile content and thus, to eliminate any subsequent devolatilization of the carbonaceous residues. These chars are used as raw materials in steam gasification experiments. The gasification studies are performed on each char separately, in a tubular kiln at various temperatures (900°C, 950°C and 1000°C) and various vapour pressures (0.2 bar, 0.5 bar and 0.7 bar). The gases produced are analysed by gas chromatography in order to determine the gasification kinetics. The kinetics parameters, with respect to H2O, together with the influence of the char's physical properties are experimentally determined. A kinetic expression for the gasification reaction, based on the random pore model is deduced. It is shown that the char resulting from the pyrolysis of MSW constituents, essentially paper, wood and vegetables have the same gasification kinetics. On the contrary, the plastic char steam gasification kinetic appears to be significantly slower.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7502
Author(s):  
Katarzyna Śpiewak ◽  
Grzegorz Czerski ◽  
Karol Bijak

This research aimed to assess the process conditions, temperature and pressure, on the gasification of alternative refuse-derived fuel (RDF) in the atmosphere of steam and carbon dioxide on a laboratory scale using a fixed bed reactor. For this reason, the selected RDF were analysed, including proximate and ultimate analysis, mercury content and ash composition. After that, isothermal gasification measurements using the thermovolumetric method were performed under various temperatures (700, 750, 800, 900 °C) and pressures (0.5, 1, 1.5 MPa), using steam and carbon dioxide as gasifying agents. The obtained results showed that in the entire analysed range, the increase in temperature positively affect both the steam and CO2 gasification of RDF. The formation rates of main components (H2 and/or CO) of the resulting gas, as well as yields of gas components and maximum carbon conversion degrees increase. However, this positive effect was the greater, the lower the process pressure was. In turn, the effect of pressure was more complex. In the case of RDF steam gasification, an increase in pressure had a negative effect on the process, while when using carbon dioxide as a gasifying agent, an improvement of most analysed parameters was observed; however, only at low temperatures, 700–750 °C.


2014 ◽  
Vol 68 (12) ◽  
Author(s):  
Jozef Dudáš ◽  
Marcel Kotora ◽  
Michal Bradáč ◽  
Jozef Markoš

AbstractEsterification of succinic acid to form dimethyl succinate has been analysed and the process design is presented in this paper. The process analysis and design are based on our own experimental data (kinetics), information from open literature, and own mathematical models and computer programs for process simulation and evaluation. Reactive distillation and a tubular reactor followed by separation of components from the reaction mixture were considered and evaluated. An economic analysis indicated that operational costs dominate over the capital ones in the costs estimation and that the integration of partial processes into one vessel (reactive distillation) is advantageous. However, according to the analysis of the process conditions (temperature and pressure) for the reaction and distillation, it is impossible to execute the process in one vessel. Therefore, a fixed bed reactor combined with distillation was proposed and the technology has been developed.


2016 ◽  
Vol 6 (16) ◽  
pp. 6431-6440 ◽  
Author(s):  
Laura Fratalocchi ◽  
Carlo Giorgio Visconti ◽  
Luca Lietti ◽  
Gianpiero Groppi ◽  
Enrico Tronconi ◽  
...  

The effect of water on the Fischer–Tropsch performance of a supported cobalt catalyst has been studied in a fixed bed reactor by running co-feeding experiments for more than 1000 h under industrially relevant process conditions.


Sign in / Sign up

Export Citation Format

Share Document