Experimental Research on Influences on Mechanical Property of C50 Waterproof Concrete by Basalt Fiber

2013 ◽  
Vol 834-836 ◽  
pp. 755-761
Author(s):  
Hai Liang Wang ◽  
Hai Yang Guo ◽  
Xin Lei Yang ◽  
Quan Chang Ren ◽  
Peng Dong

The experiment discussed influences of basalt fiber with different adulterate amount to the compressive and fracture resistance properties of waterproof concrete C50. We also made comparison between experimental results and mechanical property of polypropylene fiber waterproof concrete. The experimental results demonstrated that the brittle failure character of waterproof concrete has been improved to some extent, and the compressive and fracture resistance strength of the test specimen has increased apparently after adulterating basalt fiber and polypropylene fiber. Furthermore, it is mainly unanimous of the influence regular patterns of basalt fiber and polypropylene fiber to waterproof concrete when adulterating the same amount.

2010 ◽  
Vol 150-151 ◽  
pp. 1063-1067
Author(s):  
Fei Fei Zhu ◽  
Zhi Li Zhong ◽  
Zong Fu Guo

The three composite boards which were made of continuous basalt fiber (CBF) and polypropylene fiber (PP) in different fiber ratios were researched on this paper. The manufacturing forming process included blending, carding, web formation, laminating and compression molding orderly. The tension and bending properties were investigated experimentally, and then dual variance analysis was used to show the significant difference of the mechanical property in the transverse and longitudinal orientation as well the appreciable impact of different fiber ratios to the mechanical property. The results show that the difference of the tension and blending strength in the same direction, among composite boards in different fiber proportions, is about 1~10Mpa; the difference in the same fiber proportion, between transverse and longitudinal, vary within a wide range from 10Mpa to 30Mpa. The results of variance analysis have also proved the conclusion, the difference between transverse and longitudinal is more significant than the difference among different fiber proportions. In the similar study, the significance hadn’t been seen sufficiently, so this paper provides reference to the actual application of the composite board.


2011 ◽  
Vol 328-330 ◽  
pp. 1351-1354
Author(s):  
Jun Yong He ◽  
Xiao Qing Huang ◽  
Cheng Yu Tian

Basalt fiber has the advantages of non-pollution and omnipotence, and will be widely used in the 21st Century. Therefore, more and more attention is paid on experimental research on the basalt fiber in the world. First,according to the requirements of the fibers used in the cement-based materials, the contrast testing of the plastic shrinkage between fiber cement mortar and pure mortar was made. The experimental results showed that basalt fiber , polypropylene fiber and polyacrylonitrile fiber can be preliminarily chosen as reinforced fibers in cement-based materials. Finally, taking both characteristics of basalt fiber and the increase of cement-based materials costs into account, it can be drawn that top priority should be given to the basalt fiber rather than to other fibers for cement-based materials.


2011 ◽  
Vol 90-93 ◽  
pp. 2607-2611
Author(s):  
Jun Zhi Zhang ◽  
Yan Dong Zhu ◽  
Jing Zhao ◽  
Zhao Qi Fu ◽  
Ling Jie Wu

According to a series scour resistance experiment of basalt fiber and carbon fiber hydraulic concrete, in which different length and different volume ratio of basalt fiber and carbon fiber to compare to cement volume are mixed in the concrete, the scour resistance characteristics of hydraulic fiber concrete are analyzed in this paper. Experimental results show that basalt fiber and carbon fiber may enhance scour resistance of hydraulic concrete, and the volume ratio of fiber to compare to cement volume in concrete is the main reinforcement factor, but the influence of fiber length in concrete on the scour resistance of concrete is not obvious.


2021 ◽  
pp. 105678952199873
Author(s):  
Mehdi Abdollahi Azghan ◽  
F Bahari-Sambran ◽  
Reza Eslami-Farsani

In the present study, the effect of thermal cycling and stacking sequence on the tensile behavior of fiber metal laminate (FML) composites containing glass and basalt fibers was investigated. To fabricate the FML samples, fibers reinforced epoxy composite were sandwiched between two layers of 2024-T3 aluminum alloy sheet. 55 thermal cycles were implemented at a temperature range of 25–115°C for 6 min. The tensile tests were carried out after the thermal cycling procedure, and the results were compared with non-thermal cycling specimens. Scanning electron microscopy (SEM) was employed for the characterization of the damage mechanisms. The FMLs containing four basalt fibers’ layers showed higher values of tensile strength, modulus, and energy absorption. On the other hand, the lowest strength and fracture energy were found in the asymmetrically stacked sample containing basalt and glass fibers, due to weak adhesion between composite components (basalt and glass fibers). The lowest tensile modulus was found in the sample containing glass fibers that was due to the low modulus of the glass fibers compared to basalt fibers. In the case of the samples exposed to thermal cycling, the highest and the lowest thermal stabilities were observed in basalt fibers samples and asymmetrically stacked samples, respectively. In accordance with the experimental results, a non-linear damage model using the Weibull function and tensile modulus was employed to predict the stress-strain relationship. The simulated strain–strain curves presented an appropriate agreement with the experimental results.


2015 ◽  
Vol 762 ◽  
pp. 55-60
Author(s):  
Georgia Cezara Avram ◽  
Florin Adrian Nicolescu ◽  
Radu Constantin Parpală ◽  
Constantin Dumitrascu

This paper presents the works carried out by the authors in the field of structural and functional optimization of industrial robot's numerically controlled (NC) axes. The study includes the results obtained in the research stage of the experimental measurements performed to evaluate the electrical servomotor's thermal behavior using a thermal (infrared) imaging camera. The analyzed servomotor is a brushless servomotor integrated in an experimental stand for linear motion NC axis experimental research, existing in the MMS department from EMTS faculty. Supplementary to the driving servomotor, the experimental stand includes a belt drive transmission, a ball screw - bearings assembly and a driven element guided by ball rail system. This experimental research phase is part of the doctoral thesis of first author and was conducted in order to validate the mathematical models developed in the PhD thesis. Thus, experimental results presented in the paper have been used to validate first mathematical models for electric motor's preliminary selection and checking, (performed by determining the total reflected inertia of the mechanical system on motor shaft level) as well as the mathematical models for final selection and checking (by evaluating the servomotor's thermal energy dissipation, and servomotor's internal and external maximum operating temperature). Second, the experimental results have been used to validate the assisted simulation for structural and functional optimization of industrial robot's NC axes based on both servomotor and drive's thermal behavior analysis, performed in the thesis by means of a dedicated commercial software package.


Author(s):  
Peter C. Y. Chen ◽  
Sahan C. B. Herath ◽  
Dong-an Wang ◽  
Kai Su ◽  
Kin Liao ◽  
...  

The mechanical properties of the microstructures surrounding cells influence the behavior of cells in differentiation, proliferation, and apoptosis, etc. The stiffness of the extra-cellular microenvironment has been shown to be one such mechanical property [1][2]. Studies reported in the literature concerning the stiffness of the extracellular microenvironment mainly sought to understand the scientific principles and mechanisms underlying its effect on cell-environment interaction [3]. This paper describes an approach that achieves such manipulation, and reports experimental results that demonstrate the effectiveness of this proposed approach.


Author(s):  
Minoru Chino ◽  
Kenji Takizawa ◽  
Takashi Yabe

This paper provides the experimental results on skimmer and gives some detailed information useful for benchmark test of computer codes that are now able to simulate the fluid-structure interaction. For this purpose, we specially designed the injection system that imposes reproducible rotational speed and injection speed on the skipper. The effect of rotation is discussed by changing rotation speed in a wide range.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


2015 ◽  
Vol 1128 ◽  
pp. 80-87
Author(s):  
Claudiu Nicolicescu ◽  
Iulian Ştefan ◽  
Victor Horia Nicoară

The paper presents experimental results regarding the evolution of hardness and impact energy of some sintered steels alloyed with 1.5% respective 3% (weight) copper powders. For the experimental research were used 3 mixtures: Fe+0.2C as reference, Fe+0.2C+1.5Cu, Fe+0.2C+3Cu. All the samples were die pressed at three pressures 400, 500 and 600 MPa and were subjected at three types of treatments as following: SINT, SINTCARB and CARBSINT. For the sintering treatments was used argon atmosphere and for carburizing process was used methane. After each treatment the hardness and impact energy for all the samples were measured and were made correlations between these properties and the type of treatment and copper content.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiangfeng Lv ◽  
Xiaohui Yang ◽  
Hongyuan Zhou ◽  
Shuo Zhang

In this study, the specimens of cemented sand were prepared by reinforcing it separately with different contents (0.5%, 1.0%, 1.5%, and 2.0%) of three different polymer fibers (polyamide, polyester, and polypropylene) prepared as filaments of different lengths (6, 9, and 12 mm). Then, these specimens were tested, and the improvement effects of the three fibers on the engineering-mechanical behavior of the cemented sand were analyzed and compared. The different microstructures and chemical compositions of the fiber-reinforced cemented sand specimens were investigated using electron microscopy and X-ray diffraction. Compression tests were performed to obtain the stress-strain curves of the specimens. Comparative analysis was performed on the variation patterns of the mechanical parameters (such as unconfined compressive strength and peak strain) of the specimens. Quantitative analysis was performed on the effect of fiber content and fiber filament length on the failure mode of the specimens. It was shown that the inclusion of fibers led to a change from brittle failure to ductile failure. The macro- and microexperimental results revealed that polypropylene fiber had the best improvement effect on the mechanical behavior of the cemented sand, followed by polyester fiber and polyamide fiber. In particular, the cemented sand specimen reinforced with 1.5% polypropylene fiber prepared as 9 mm length filaments had a brittleness index of 0.0578, exhibited ductile failure (in contrast to the brittle failure of the nonreinforced cemented sand), and yielded the highest unconfined compressive strength and shear strength among the specimens.


Sign in / Sign up

Export Citation Format

Share Document