Ti (CN) Precipitation in Ultra-High Strength Ti Micro-Alloyed Steels with 700MPa Yield Strength on TSCR Process

2013 ◽  
Vol 842 ◽  
pp. 61-69 ◽  
Author(s):  
Qi Lin Chen ◽  
Xin Ping Mao ◽  
Xin Jun Sun

Precipitates in ultra-high strength Ti micro-alloyed strips with 700MPa yield strength on TSCR process and in the thermal simulation experimental specimen are observed via Scanning Electronic Microscope (SEM) and Transmission Electron Microscope (TEM), the results show that: the precipitates in the Ti micro-alloyed cast slab thermal simulation experiment can be divided into three categories: 1) micron-sized liquation TiN, 2) 100-200nm sized TiC formed along original austenite grain boundaries or along the dendrite segregation band, 3) solid precipitated 50-100nm sized TiN. Deformation induced spherical TiC (about 10nm-30nm) homogeneously distributed in the matrix after the austenite deformation .After simulated coiling, dispersed TiC (about 5-15nm ) precipitated from ferrite are found in the specimen. TiN with hundreds of nanometers size are commonly found in Ti micro-alloyed strips in industrial production. Ti4C2S2and Ti (CN) are complex precipitated, Ti4C2S2size is less than 30nm; physical and chemical phase analysis shows that the nanosized TiC precipitates are characterized by high volume fraction and small dimensions.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2763
Author(s):  
Munir Hussain ◽  
Sohail Yasin ◽  
Hafeezullah Memon ◽  
Zhiyun Li ◽  
Xinpeng Fan ◽  
...  

In this paper we designed greener rubber nanocomposites exhibiting high crosslinking density, and excellent mechanical and thermal properties, with a potential application in technical fields including high-strength and heat-resistance products. Herein 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) ionic liquid was combined with silane coupling agent to formulate the nanocomposites. The impact of [EMIM]OAc on silica dispersion in a nitrile rubber (NBR) matrix was investigated by a transmission electron microscope and scanning electron microscopy. The combined use of the ionic liquid and silane in an NBR/silica system facilitates the homogeneous dispersion of the silica volume fraction (φ) from 0.041 to 0.177 and enhances crosslinking density of the matrix up to three-fold in comparison with neat NBR, and also it is beneficial for solving the risks of alcohol emission and ignition during the rubber manufacturing. The introduction of ionic liquid greatly improves the mechanical strength (9.7 MPa) with respect to neat NBR vulcanizate, especially at high temperatures e.g., 100 °C. Furthermore, it impacts on rheological behaviors of the nanocomposites and tends to reduce energy dissipation for the vulcanizates under large amplitude dynamic shear deformation.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2397 ◽  
Author(s):  
Łukasz Rakoczy ◽  
Ondrej Milkovič ◽  
Bogdan Rutkowski ◽  
Rafał Cygan ◽  
Małgorzata Grudzień-Rakoczy ◽  
...  

In situ X-ray diffraction and transmission electron microscopy has been used to investigate René 108 Ni-based superalloy after short-term annealing at high-homologous temperatures. Current work is focused on characterisation of γ′ precipitates, their volume fraction, evolution of the lattice parameter of γ and γ′ phases and misfit parameter of γ′ in the matrix. Material in the initial condition is characterised by a high-volume fraction (over 63%) of γ′ precipitates. Irregular distribution of alloying elements was observed. Matrix channels were strongly enriched in Cr, Co, W and Mo, whereas precipitates contain large amount of Al, Ti, Ta and Hf. Exposure to high-homologous temperatures in the range 1100–1250 °C led to the dissolution of the precipitates, which influenced the change of lattice parameter of both γ and γ′ phases. The lattice parameter of the matrix continuously grew during holding at high temperatures, which had a dominant influence on the more negative misfit coefficient.


2021 ◽  
Vol 60 (1) ◽  
pp. 15-24
Author(s):  
Silu Liu ◽  
Yonghao Zhao

Abstract Metals with a bimodal grain size distribution have been found to have both high strength and good ductility. However, the coordinated deformation mechanisms underneath the ultrafine-grains (UFGs) and coarse grains (CGs) still remain undiscovered yet. In present work, a bimodal Cu with 80% volume fraction of recrystallized micro-grains was prepared by the annealing of equal-channel angular pressing (ECAP) processed ultrafine grained Cu at 473 K for 40 min. The bimodal Cu has an optimal strength-ductility combination (yield strength of 220 MPa and ductility of 34%), a larger shear fracture angle of 83∘ and a larger area reduction of 78% compared with the as-ECAPed UFG Cu (yield strength of 410 MPa, ductility of 16%, shear fracture angle of 70∘, area reduction of 69%). Grain refinement of recrystallized micro-grains and detwinning of annealing growth twins were observed in the fractured bimodal Cu tensile specimen. The underlying deformation mechanisms for grain refinement and detwinning were analyzed and discussed.


1995 ◽  
Vol 36 (10) ◽  
pp. 1219-1228 ◽  
Author(s):  
Akihisa Inoue ◽  
Hisamichi Kimura ◽  
Kenichiro Sasamori ◽  
Tsuyoshi Masumoto

2013 ◽  
Vol 745-746 ◽  
pp. 715-721 ◽  
Author(s):  
Pei Qing La ◽  
Yu Peng Wei ◽  
Yang Yang ◽  
Hong Ding Wang ◽  
Ya Ping Bai

Bulk nanocrystalline Fe-Al based alloys with 5, 10 and 15 wt. % Ni were prepared by aluminothermic reaction. The alloys were analyzed by electron probe microanalyzer, X-ray diffraction and transmission electron microscope. Compressive yield strength and hardness of the alloys were tested. The experimental results showed that all of the alloys consisted of Fe-Al-Ni matrix and small amount of Al2O3 sphere. The matrix phases of the alloys with 5 and 10 wt. % Ni had disordered α-Fe solid solution, while the matrix phases of the alloys with 15 wt. % Ni had disordered α-Fe solid solution, NiAl phase and Fe3AlCx phase. Average grain sizes of the matrix phases of the alloys were about 20 nm. The alloys with 5 wt.% Ni had the best plasticity, but the alloys with 15 wt. % Ni had the highest yield strength and hardness. Yield strength of those alloys is higher than that of coarse-grained Fe3Al.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (6) ◽  
pp. 13-18 ◽  
Author(s):  
J. Miyake ◽  
G. Ghosh ◽  
M.E. Fine

Computer-aided design of alloys is becoming increasingly useful, replacing the completely experimental approach. The computer-aided approach significantly reduces the cost of alloy design and more easily leads to optimum properties by reducing the amount of experimentation. Design of high-strength, high-conductivity alloys is a good example of the efficacy of using the computer to design experimental alloys.Alloys that have both high strength and high electrical conductivity are needed for many applications such as lead frames, connectors, conducting springs, and sliding contacts. Figure 1 shows the strength and conductivity of some commercially available copper-based alloys. Since dissolved solutes in an otherwise pure metal rapidly reduce the electrical conductivity (as well as the thermal conductivity), solid solution strengthening is not suitable for designing this class of alloys. Such alloys must be designed on the basis of precipitation or dispersion hardening. The theory of the yield stress of alloys with precipitates or dispersed phases has been well-formulated and may be used for alloy design. The solubility of the hardening phase in the matrix must be very small. Otherwise the conductivity will be degraded too much. Nordheim's rule relates conductivity to dissolved solute in alloys and is also available for alloy design. Decreasing the dissolved solute increases the conductivity and strength due to an increase in the volume fraction of the precipitate.


2017 ◽  
Vol 24 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Aiguo Liu ◽  
Da Li ◽  
Fanling Meng ◽  
Huanhuan Sun

AbstractThe volume fraction, dissolution, and segregation of WC particles in metal-matrix composites (MMCs) are critical to their wear resistance. Low carbon steel substrates were precoated with NiCrBSi coatings and processed with gas tungsten arc melt injection method to fabricate MMCs with high volume fraction of WC particles. The microstructures and wear resistance of the composites were investigated. The results showed that the volume fraction of WC particles increased with decreasing hopper height and was as high as 44% when hopper height was 100 mm. The dissolution of WC particles was minimal. The content of the alloying elements decreased from the top to the bottom of the matrix. More WC particles dissolved in the overlapping area, where Fe3W3C carbide blocks could be found. The wear loss of the MMCs after 40 min was 6.9 mg, which is 76 times less than that of the substrate after the 4 min test.


2015 ◽  
Author(s):  
Risa Yoshizaki ◽  
Kim Tae Sung ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada

Carbon nanotubes (CNTs) have very high specific strength and stiffness. The excellent properties make it possible to enhance the mechanical properties of polymer matrix composites. However, it is difficult to use CNTs as the reinforcement of long fibers because of the limitation of CNT growth. In recent years, a method to spin yarns from CNT forests has developed. We have succeeded in manufacturing the unidirectional composites reinforced with the densified untwisted CNT yarns. The untwisted CNT yarns have been manufactured by drawing CNTs through a die from vertically aligned CNT arrays. In this study, the densified untwisted CNT yarns with a polymer treatment were fabricated. The tensile strength and the elastic modulus of the yarns were improved significantly by the treatment, and they were 1.9 GPa and 140 GPa, respectively. Moreover, the polymer treatment prevented the CNT yarns from swelling due to impregnation of the matrix resin. Finally, the high strength CNT yarn composites which have higher volume fraction than a conventional method were successfully fabricated.


2017 ◽  
Vol 896 ◽  
pp. 182-189 ◽  
Author(s):  
Ji Ming Zhang ◽  
Qiang Chi ◽  
Ling Kang Ji ◽  
Hui Feng ◽  
Yan Hua Li ◽  
...  

Fine microstructure of twinning Martensite/austenite (M/A) islands in a X100 high strength pipeline steel were analyzed by the scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), and a uniaxial compressive experiment of micro-pillar for a twinning M/A island was conducted in present paper. The experimental results showed that M/A islands in X100 pipeline steels were consisted of retained austenite and nanoscale twins with sizes of less than ten nanometers. There were a few small blocks of nanoscale twins in an M/A island. Volume fraction of twinning M/A islands had an important effect on mechanical properties of X100 pipeline steels, with the increase of twinning M/A islands fraction, yield strength of X100 pipeline steel increased, and impact toughness of X100 pipeline steel decreased. The micro-pillar compression showed that the nanoscale twinning M/A island exhibited the higher deformation hardening during the compressive test, and its uniaxial compressive strength could up to 1.35GPa ultrahigh stress level.


1987 ◽  
Vol 109 (1) ◽  
pp. 74-86 ◽  
Author(s):  
C. K. Sung ◽  
B. S. Thompson

An essential ingredient of the next generation of robotic manipulators will be high-strength lightweight arms which promise high-performance characteristics. Currently, a design methodology for optimally synthesizing these essential robotic components does not exist. Herein, an approach is developed for addressing this void in the technology-base by integrating state-of-the-art techniques in both the science of composite materials and also the science of flexible robotic systems. This approach is based on the proposition that optimal performance can be achieved by fabricating robot arms with optimal cross-sectional geometries fabricated with optimally tailored composite laminates. A methodology is developed herein which synthesizes the manufacturing specification for laminates which are specifically tailored for robotic applications in which both high-strength, high-stiffness robot arms are required which also possess high material damping. The parameters in the manufacturing specification include the fiber-volume fraction, the matrix properties, the fiber properties, the ply layups, the stacking sequence and the ply thicknesses. This capability is then integrated within a finite-element methodology for analyzing the dynamic response of flexible robots. An illustrative example demonstrates the approach by simulating the three-dimensional elastodynamic response of a robot subjected to a prescribed spatial maneuver.


Sign in / Sign up

Export Citation Format

Share Document