Properties of Pt Schottky Contact on Porous In0.27Ga0.73N Thin Film Revealed from I-V Measurements

2014 ◽  
Vol 895 ◽  
pp. 558-563
Author(s):  
Saleh H. Abud ◽  
Zainuriah Hassan ◽  
F.K. Yam ◽  
M.A. Ahmad

The electrical properties of a Pt Schottky contact on porous In0.27Ga0.73N/GaN/AlN/Si (111) thin film that was grown via the plasma-assisted molecular beam epitaxy technique were reported. Porous film nanostructure was synthesized using the electrochemical etching technique at a current density of 25 mA/cm2. The formed pores were dissimilar in terms of size and shape. The effects of annealing temperature and applied bias on Schottky contact for porous sample were investigated by current-voltage (IV) measurements in ambient illumination. The barrier height and ideality factor were determined. The Pt Schottky contact exhibits thermal stability during annealing. Schottky barrier height increased when each of the annealing temperature and bias voltage were increased.

Author(s):  
I.A. Tarasov ◽  
M.V. Rautskii ◽  
I.A. Yakovlev ◽  
M.N. Volochaev

AbstractSelf-assembled growth of α-FeSi_2 nanocrystal ensembles on gold-activated and gold-free Si(001) surface by molecular beam epitaxy is reported. The microstructure and basic orientation relationship (OR) between the silicide nanocrystals and silicon substrate were analysed. The study reveals that utilisation of the gold as catalyst regulates the preferable OR of the nanocrystals with silicon and their habitus. It is shown that electron transport from α-FeSi2 phase into p-Si(001) can be tuned by the formation of (001)—or (111)—textured α-FeSi2 nanocrystals ensembles. A current-voltage characteristic of the structures with different preferable epitaxial alignment (α-FeSi_2(001)/Si(100) and α-FeSi_2(111)/Si(100)) shows good linearity at room temperature. However, it becomes non-linear at different temperatures for different ORs due to different Schottky barrier height governed by a particular epitaxial alignment of the α-FeSi_2/ p -Si interfaces.


2008 ◽  
Vol 600-603 ◽  
pp. 643-646 ◽  
Author(s):  
Akimasa Kinoshita ◽  
Takashi Nishi ◽  
Takasumi Ohyanagi ◽  
Tsutomu Yatsuo ◽  
Kenji Fukuda ◽  
...  

The reaction and phase formation of the Ti/SiC Schottky contact as a function of the annealing temperature (400~700oC) were investigated. The Schottky barrier height (fb) and the crystal structure of the samples annealed at the different temperature were measured by the forward current-voltage (IV) characteristics and the x-ray diffraction (XRD), respectively. XRD measurements were performed in the w-2q scan and the pole figure measurement for Ti (101) diffraction peak. The fb was changed as a function of temperature. It was concluded that the fb variation and non-uniformity of the samples annealed at 400oC, 500oC, 600 oC and 700oC was caused by changing the condition at the interface between SiC substrate and Ti. We fabricated the 600V Ti/SiC silicidation SBD annealed at 500oC for 5min. As a result, a low forward voltage drop, low reverse leakage current and stability at high temperature (200 oC) for the Ti/SiC silicidation SBD were shown.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1188
Author(s):  
Ivan Rodrigo Kaufmann ◽  
Onur Zerey ◽  
Thorsten Meyers ◽  
Julia Reker ◽  
Fábio Vidor ◽  
...  

Zinc oxide nanoparticles (ZnO NP) used for the channel region in inverted coplanar setup in Thin Film Transistors (TFT) were the focus of this study. The regions between the source electrode and the ZnO NP and the drain electrode were under investigation as they produce a Schottky barrier in metal-semiconductor interfaces. A more general Thermionic emission theory must be evaluated: one that considers both metal/semiconductor interfaces (MSM structures). Aluminum, gold, and nickel were used as metallization layers for source and drain electrodes. An organic-inorganic nanocomposite was used as a gate dielectric. The TFTs transfer and output characteristics curves were extracted, and a numerical computational program was used for fitting the data; hence information about Schottky Barrier Height (SBH) and ideality factors for each TFT could be estimated. The nickel metallization appears with the lowest SBH among the metals investigated. For this metal and for higher drain-to-source voltages, the SBH tended to converge to some value around 0.3 eV. The developed fitting method showed good fitting accuracy even when the metallization produced different SBH in each metal-semiconductor interface, as was the case for gold metallization. The Schottky effect is also present and was studied when the drain-to-source voltages and/or the gate voltage were increased.


1994 ◽  
Vol 337 ◽  
Author(s):  
C-P. Chen ◽  
Y. A. Chang ◽  
T.F. Kuech

ABSTRACTA systematic study of the enhancement of Schottky barriers to n-GaAs diodes has been carried out using the Ni-Al binary system. The diodes, Ni2Al3/n-GaAs, Ni2Al3/Ni/n-GaAs, Ni/Al/Ni/n-GaAs and NiAl/Al/Ni/n-GaAs, have been realized by sputter deposition at a base pressure ∼2xl0-7 Torr. A high Schottky barrier height ranging from 0.95 to 0.98 eV (deduced from current-voltage measurements) was observed for all the annealed contacts except for Ni2Al3/n-GaAs contacts. The enhancement of the Schottky barrier height in all the contacts was attributed to the formation of a high Al content (Al,Ga)As layer at the metal/semiconductor interface. The formation of this (Al,Ga)As layer was explained in terms of a regrowth mechanism. In this mechanism, Ni reacts with GaAs initially at low temperatures, forming NixGaAs. The NixGaAs layer is believed to react with the Ni-Al layer to form the (Al,Ga)As layer when subjected to a high temperature annealing. A (200) dark field XTEM image of the annealed contact was used to demonstrate the existence of this (Al,Ga)As phase.


2008 ◽  
Vol 63 (3-4) ◽  
pp. 199-202 ◽  
Author(s):  
Ahmet Faruk Ozdemir ◽  
Adnan Calik ◽  
Guven Cankaya ◽  
Osman Sahin ◽  
Nazim Ucar

Au/n-GaAs Schottky barrier diodes (SBDs) have been fabricated. The effect of indentation on Schottky diode parameters such as Schottky barrier height (φb) and ideality factor (n) was studied by current-voltage (I-V) measurements. The method used for indentation was the Vickers microhardness test at room temperature. The experimental results showed that the I-V characteristics move to lower currents due to an increase of φb with increasing indentation weight, while contacts showed a nonideal diode behaviour.


2007 ◽  
Vol 1040 ◽  
Author(s):  
Balakrishnam R Jampana ◽  
Omkar K Jani ◽  
Hongbo Yu ◽  
Ian T Ferguson ◽  
Brian E McCandless ◽  
...  

AbstractSchottky-barrier photovoltaic devices are fabricated by selective metal deposition on p-GaN. A 1.25 V open-circuit voltage is observed for the best device. Devices were optimized by annealing in forming gas at temperatures ranging from 550°C to 700°C. Annealing time and forming gas flow rate are used to control the metal-semiconductor Schottky barrier formation. Optimum fabrication parameters are achieved based on photovoltaic response from the devices under UV illumination. Barrier heights (0.47 eV - 0.49 eV) were used as basis to compare the device response. The Schottky-barrier height is very sensitive to processing conditions, for example a 2.5% increase in barrier height is observed when Schottky contact annealing temperature is changed from 600 °C to 650 °C. Under UV illumination, the open-circuit voltage and short-circuit current increase with increasing annealing temperature while the series resistance decreases under such conditions.


2010 ◽  
Vol 24 (29) ◽  
pp. 2889-2898 ◽  
Author(s):  
M. Z. MOHD YUSOFF ◽  
Z. HASSAN ◽  
C. W. CHIN ◽  
S. M. THAHAB ◽  
H. ABU HASSAN

The application of thermal annealing at various annealing temperatures (473–1073 K) has been shown to significantly modify surface morphology of platinum ( Pt ) metal contacts on AlGaN / GaN / AlN heterostructure grown on silicon by plasma-assisted molecular beam epitaxy (PA-MBE). Structural analysis of the AlGaN / GaN samples used for the Pt Schottky contacts fabrication were performed by using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Pt metal contacts were then deposited on the samples followed by current–voltage (I–V) characterization. Thermally-treated samples showed significant decrease in current compared with untreated samples. From the I–V measurements, the Schottky barrier height (SBH) and ideality factor (n) were calculated. We found that the lowest value of SBH obtained was 0.526 eV at 873 K annealing temperature. Unfortunately, there are no values for the SBH and ideality factor at 1073 K annealing temperature. The SEM analysis has shown some island formation at high annealing temperature due to the difference of surface energies between thin metal films and AlGaN that causes dewetting. We suggest that the reason for the barrier height reduction is due to the metal island formation on the samples.


Sign in / Sign up

Export Citation Format

Share Document