Evaluation of the Corrosion Behavior of the Laser Gas Nitrided Ti-6Al-4V

2010 ◽  
Vol 297-301 ◽  
pp. 1160-1166
Author(s):  
R. Sh. Razavi ◽  
G.R. Gordani ◽  
M. Salehi ◽  
Hau Chung Man

Laser gas nitriding of Ti-6Al-4V alloy was carried out using a Nd:YAG pulsed laser under pure nitrogen environment at a flow rate of 30 l/min. The microstructure and corrosion behavior of the nitrided samples were examined using scanning electron microscopy, XRD, XPS, and anodic polarization tests in 2M HCl solution. For comparison, untreated samples were tested under the same conditions. After laser treatment, samples showed a relative flat surface with no problems of cracks or delamination of the alloyed tracks. Laser nitriding produced dendritic structures. The microstructure of the laser melted zone consisted of a thin continuous layer followed by a nearly perpendicular growth of dendrites. Below this a mixture of small dendrites and large needles with random orientation was produced. X-ray spectrum and XPS analyses from the surface of the laser nitrided specimen at different depth, confirmed that the thin top layer and large dendrites close to the surface corresponded to TiN. It can be also seen that the strong TiN peaks on the top surface gradually decrease with depth which suggests that the structure beneath the top surface is likely TiN0.3 and ά-Ti mixtures. In general, the corrosion potential of laser gas nitrided specimens was relatively nobler than the untreated sample. Furthermore, the proper laser nitrided specimen exhibited less corrosion current density, passivated more readily and also maintained a lower current density over the duration of the experiment. This was correlated with the formation of very thin, continuous TiNxOy film in an oxidation state that was confirmed by XPS analyses of the passive layers.

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Jun Cheng ◽  
Jinshan Li ◽  
Sen Yu ◽  
Zhaoxin Du ◽  
Fuyu Dong ◽  
...  

Newly developed Ti–10Mo–6Zr–4Sn–3Nb has fascinating mechanical properties to be used as a biomedical material. However, there is still a lack of investigation focusing on the corrosion behavior of Ti–10Mo–6Zr–4Sn–3Nb. In this work, the microstructure and corrosion behavior of as-cast Ti–10Mo–6Zr–4Sn–3Nb was investigated by optical microscopy, X-ray diffraction, and electrochemical measurements. Hank’s solution was used as the electrolyte. A classical as-cast Ti–6Al–4V was used as reference. The results showed that Ti–10Mo–6Zr–4Sn–3Nb has a higher corrosion potential and a lower corrosion current density compared with Ti–6Al–4V, indicating better corrosion resistance. However, after applying anodic potentials, Ti–10Mo–6Zr–4Sn–3Nb shows larger passivation current density in both potentiodynamic polarization and potentiostatic polarization tests. This is because more alloying elements contained in Ti–10Mo–6Zr–4Sn–3Nb trigger the production of a larger number of oxygen vacancies, resulting in a higher flux of oxygen vacancy. This finding illustrates that the passive film on Ti–10Mo–6Zr–4Sn–3Nb is less protective compared with that on Ti–6Al–4V when applying an anodic potential in their passivation range.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zhonglu Cao ◽  
Makoto Hibino ◽  
Hiroki Goda

The effect of nitrite ions on the macrocell corrosion behavior of reinforcing steel embedded in cement mortar was investigated by comparing and analyzing the macrocell corrosion current, macrocell polarization ratios, and slopes of anodic and cathodic steels. Based on the experimental results, the relationship between macrocell potential difference and macrocell current density was analyzed, and the mechanism of macrocell corrosion affected by nitrite ions was proposed. The results indicated that nitrite ions had significant impact on the macrocell polarization ratios of cathode and anode. The presence of nitrite could reduce the macrocell current by decreasing the macrocell potential difference and increasing the macrocell polarization resistance of the anode.


2010 ◽  
Vol 663-665 ◽  
pp. 473-476
Author(s):  
Shu Qi Zheng ◽  
Chang Feng Chen ◽  
Rui Jing Jiang ◽  
Dan Ni Wang

In the environment with H2S/CO2 or Na2S, the corrosion behavior of Lanthanum hexaboride (LaB6) was investigated by electrochemistry methods. The results indicated that the corrosion potential (Ecorr) and Rf of LaB6 increased as the partial pressure of H2S increased, while the corrosion current density (Icorr) decreased. In the environment containing Na2S, as the content of Na2S increased, the corrosion potential (Ecorr) and Rf of LaB6 decreased, while the corrosion current density (Icorr) increased. Thus, the addition of H2S into the environment with H2S/CO2 would inhibit the corrosion of LaB6; while in the environment containing Na2S, the increasing of the content of Na2S would accelerate the corrosion of LaB6.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2069 ◽  
Author(s):  
Jian Ding ◽  
Xin Liu ◽  
Yujiang Wang ◽  
Wei Huang ◽  
Bo Wang ◽  
...  

The effect of Sn addition on the microstructure and corrosion behavior of extruded Mg–5Zn–4Al–xSn (0, 0.5, 1, 2, and 3 wt %) alloys was investigated by optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), electrochemical measurements, and immersion tests. Microstructural results showed that the average grain size decreased to some degree and the amount of precipitates increased with the increasing amount of Sn. The extruded Mg–5Zn–4Al–xSn alloy mainly consisted of α-Mg, Mg32(Al,Zn)49, and Mg2Sn phases as the content of Sn was above 1 wt %. Electrochemical measurements indicated that the extruded Mg–5Zn–4Al–1Sn (ZAT541) alloy presented the best corrosion performances, with corrosion potential (Ecorr) and corrosion current density (Icorr) values of −1.3309 V and 6.707 × 10−6 A·cm−2, respectively. Furthermore, the corrosion mechanism of Sn is discussed in detail.


2013 ◽  
Vol 716 ◽  
pp. 159-165
Author(s):  
E.M. Pechlivani ◽  
G. Stergioudis ◽  
Eleni Pavlidou ◽  
D. Tsipas ◽  
S. Skolianos

The paper aims to compare the hardness and corrosion behavior of carburized and borided Iron-Based Austenitic Steels (IBAS) which were treated at the same temperature and time under vacuum conditions. Boronizing was performed by pack cementation in Ekabor II powder and carburization was carried out by annealing under vacuum conditions using glucose as a carburizing medium. Both boronizing and carburizing procedures were performed at 900°C for 3h. The characterization of the treated materials was assessed by using X-Ray Diffraction (XRD) analysis, optical observations, Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS) measurements and micro-Vickers hardness tests. Potentiodynamic polarization curves were also used to determine electrochemical characteristics such as the corrosion potential (mV), corrosion current density (μΑ/cm2) and corrosion rate (μm/year). The results showed that borided samples with a single phase layer, exclusively Fe2B strongly toothed, exhibited better hardness behavior towards carburized samples but lesser corrosion resistance instead.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 616
Author(s):  
Zhaoyang Song ◽  
Hongwen Zhang ◽  
Xiuqing Fu ◽  
Jinran Lin ◽  
Moqi Shen ◽  
...  

The objective of this study was to improve the surface properties, hardness, wear resistance and electrochemical corrosion resistance of #45 steel. To this end, Ni–P–ZrO2–CeO2 composite coatings were prepared on the surface of #45 steel using the jet-electrodeposition technique by varying the current density from 20 to 60 A/dm2. The effect of current density on the performance of the composite coatings was evaluated. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) were applied to explore the surface topography, elemental composition, hardness and electrochemical corrosion resistance of the composite coatings. The results showed that with the increase in the current density, the hardness, wear resistance, and electrochemical corrosion resistance tends to increase first and then decrease. At a current density of 40 A/dm2, the hardness reached a maximum of 688.9 HV0.1, the corrosion current reached a minimum of 8.2501 × 10−5 A·cm−2, and the corrosion potential reached a maximum of −0.45957 V. At these values, the performance of the composite coatings was optimal.


2019 ◽  
Vol 66 (6) ◽  
pp. 704-718
Author(s):  
Qingmiao Ding ◽  
Zili Li ◽  
Tao Shen ◽  
Gan Cui

Purpose This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method. Design/methodology/approach The corrosion behavior of the metal under disbond coating interfered with alternate stray current (AC) was studied by electrochemical methods using the rectangular coating disbonded simulator. The obtained data from electrode potential test, electrochemical impedance spectroscopy (EIS) and polarization curves in simulated soil solution indicated that under the natural corrosion condition, the self-corrosion potential and the corrosion current density of the metal at different depths under disbond coating had obviously changed if there was AC interference. Findings The self-corrosion potential of the metal at the same depths under disbond coating shifted negatively with the rising of the AC voltage. Under the condition of cathode polarization, there was still obvious potential gradient with the extension of the deep peeling of the coating gap, and the corrosion current density of the test points was minimum, and the protection effect was best when the cathode protection potential was −1.0 V. When the metal was applied with over-protection, the corrosion rate of the metal increased as AC stray current flowing through it increased. Originality/value This paper used the rectangular aperture device to study the corrosion behavior of X80 steel under the disbonded coatings through electrochemical methods when the AC stray current interference voltage was 0V, 1V, 5V or 10V and the protection potential was 0V, −0.9V, −1.0V, −1.2V or −1.3V, respectively. There is great significance to the safe operation and long-term service of pipeline steel in soil environment.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3731 ◽  
Author(s):  
Wenchao Yang ◽  
Zaixiang Du ◽  
Shuyuan Yu ◽  
Yitai Li ◽  
Junli Feng ◽  
...  

Sn-0.7Cu-0.075Al solder alloy adding with Ce and La had been successfully prepared by applying ball-milling and vacuum arc remelting. The influence of Ce and La on microstructure and corrosion behavior of Sn-0.7Cu-0.075Al solder alloy was investigated. The results showed that Ce (La)-containing solders had refined grains and obvious directional tendency due to the dispersive refiner (CeO2 and La2O3). Electrochemical potentiodynamic curves revealed three different stages of the reaction, including anodic and cathodic processes, prepassivation section, and stable passivation stages. The self-corrosion potential (Ecorr) of alloys with Ce and La addition were a little bit more negative, hardly making a difference on corrosion occurrence. However, the corrosion current density (Icorr) and passivation current density (Ip) decreased by two-thirds and one-half respectively, which indicated a better corrosion resistant after adding rare earths. The recorded micrographs of corroded surface at different polarized points witnessed the formation of corrosion product film both on prepassivation and passivation stage. Moreover, the cross section of corrosion product film showed the coarse, loose film in Sn-0.7Cu-0.075Al solder and adherent, compact film in Ce (La)-containing solders, which further indicated an excellent anti-corrosion property.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Qingmiao Ding ◽  
Liping Fang ◽  
Yanyu Cui ◽  
Yujun Wang

A rectangle disbonded coating simulation device was used to research the effect of sulfate reducing bacteria (SRB) on the metallic corrosion behavior under disbonded coating by the electrochemical method. The results showed that the metal self-corrosion potential at the same test point had little change in the initial experiment stage, whether the solution was without or with SRB. The potential amplitude in the solution with SRB was larger than that without SRB in the later corrosion period. The corrosion current density of the metal at the same test point increased gradually over time in the solution with or without SRB, and SRB could accelerate the corrosion of the metal in the disbonded crevice. The metal self-corrosion potential in the crevice had little change in the SRB solution environment after adding the fungicide, but the corrosion current density decreased significantly. That meant the growth and reproduction of SRB were inhibited after adding the fungicide, so the metal corrosion rate slowed down. Among the three kinds of solution environment, increasing the coating disbonded thickness could accelerate the corrosion of the metal in the crevice, and it was the largest in the solution with SRB.


2011 ◽  
Vol 189-193 ◽  
pp. 571-574
Author(s):  
Peng Li

HIPIB irradiation experiment is carried out at a specific ion current density of 1.1 J/cm2 with shot number from one to ten in order to explore the effect of shot number on electrochemical corrosion behavior of magnesium alloy. Surface morphologies, microstructure and corrosion resistance of the irradiated samples are examined by scanning electron microscopy (SEM), transmission electron microscope (TEM) and potentiodynamic polarization technique, respectively. It is found that HIPIB irradiation leads to the increase in open circuit potential, corrosion potential and breakdown potential, and the decrease in the corrosion current density and the corrosion rate as compared to the original sample. The improved corrosion resistance is mainly attributed to the grain refinement and surface purification induced by HIPIB irradiation.


Sign in / Sign up

Export Citation Format

Share Document