Influence of Strontium on In Vitro Bioactivity of Heat-Treated Porous Ca-P Ceramics on Titanium for Biomedical Applications

2011 ◽  
Vol 493-494 ◽  
pp. 453-457
Author(s):  
Kuan Chen Kung ◽  
Tzer Min Lee ◽  
Truan Sheng Lui

The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF). The aim of this study was to investigate the coatings containing strontium on bioactivity after heat treatment. After the materials were soaked in SBF for 1 day, precipitates did not form on the surface of heat-treated MAO coating without strontium. The precipitates were observed on surface of heat-treated MAO coatings containing strontium. After 7 days, the surface of heat-treated MAO coatings containing strontium was completely covered with precipitates. The precipitates were found to be composed of fiber structures using scanning electron microscope (SEM). The phase was identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that heat-treated MAO coatings containing strontium can induce the formation of an apatite layer on their surface. All finding in this study indicated that heat-treated MAO coatings containing strontium have good bioactivity for clinical applications.

2006 ◽  
Vol 514-516 ◽  
pp. 985-989
Author(s):  
B.J.M. Leite Ferreira ◽  
M.G.G.M. Duarte ◽  
M. Helena Gil ◽  
Rui N. Correia ◽  
J. Román ◽  
...  

Two materials with potential application in bone tissue repair have been developed: 1) a non-biodegradable composite based in a new methacrylic-co-acrylic matrix; and 2) a biodegradable composite based in a chitosan (Ch) matrix. Both matrices were reinforced with glass-ceramic particles of composition (mol%) 70 SiO2 – 30 CaO. The in vitro bioactivity of composites was assessed by soaking in simulated body fluid (SBF) for periods of up to 7 days at 37º C. X-ray diffraction (XRD) and scanning electron microscopy coupled with X-ray energy dispersive spectroscopy (SEM-EDS) were used for deposit identification after different soaking periods. Calcium phosphate particulate deposits were detected after 3 days of immersion, followed by growth and maturation towards apatite.


2004 ◽  
Vol 839 ◽  
Author(s):  
N. I. Papanearchou ◽  
Th. Leventouri ◽  
A. C. Kis ◽  
A. Hotiu ◽  
I. M. Anderson

ABSTRACTThe effect of simulated body fluid (SBF) on the structure and microstructure of ferrimagnetic bioglass ceramics (FBC) was investigated in series of samples in the system of the oxides [0.45(CaO, P2O5) (0.52-x)SiO2 xFe2O3 0.03Na2O], with X = 0.05, 0.10, 0.15, 0.20. Physical properties of the materials were studied as a function of processing parameters and time of immersion in SBF by x-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive x-ray spectroscopy (EDS). The in vitro experiment showed that bioactivity of the FBC varies with the composition of the oxides, heat treatment, and time of exposure in SBF in a non-systematic way. A surface layer of Si, P, Ca partially covers the Fe, O dendrites, while formation and size of pores is determined by the specific processing parameters of the materials.


Author(s):  
Erdoğan Karip ◽  
Mehtap Muratoğlu

People are exposed to different kinds of diseases or various accidents in life. Hydroxyapatite (HA) has been widely employed for bone treatment applications. In this study, HA was extracted from sheep bones. Bio-composites were doped with 1, 5, and 10 wt.% of expanded perlite and 5 wt.% of ZrO2–MgO-P2O5. The bio-composites were prepared by the cold isostatic pressing method (250 MPa) and sintered at 900°C for 1 h. In order to evaluate the characteristics of the bio-composites, microhardness, density, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) analyses were carried out on them. Additionally, the specimens whose characteristics were determined were kept in synthetic body fluid (SBF), and their in vitro behavior was examined. As a result, it was observed that microhardness increased as both the weight and the grain size of the expanded perlite were increased. Calcium silicate, tri-calcium phosphate, and hydroxyapatite were observed in the XRD analysis of all samples, and the formation of apatite structures was increased by addition of ZrO2–MgO–P2O5.


2010 ◽  
Vol 17 (02) ◽  
pp. 153-157 ◽  
Author(s):  
N. R. HA ◽  
Z. X. YANG ◽  
G. C. KIM ◽  
K. H. HWANG ◽  
D. S. SEO ◽  
...  

Titanium alloys are superior of biocompatibility, mechanical properties and chemical stability. The biocompatibility of Ti alloy is related to the surface effect between human tissue and implant. Therefore, the purpose of this study is to investigate the bioactivity of Ti alloy by alkali and acid chemical surface treatment; and the biocompatibility of Ti alloy was evaluated by in vitro test. Higher bone-bonding ability and bioactivity of the substrate were obtained by the formation of apatite layers on the Ti alloy in simulated body fluid. The microstructures of apatite layer were investigated by scanning electron microscope (SEM) and the formed phases were analyzed with X-ray diffraction (XRD).


2015 ◽  
Vol 1 (1) ◽  
Author(s):  
M. Araújo ◽  
M. Miola ◽  
A. Venturello ◽  
G. Baldi ◽  
J. Perez ◽  
...  

AbstractIn this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.


2015 ◽  
Vol 638 ◽  
pp. 67-72
Author(s):  
Ana Maria Salantiu ◽  
Florin Popa ◽  
Petru Pascuta ◽  
Olga Soritau ◽  
Noemi Dirzu ◽  
...  

This work aims to investigate the influence of surface conditioning of porous Ti for enhancing its biological activity, as assessed by in vitro stem cell testing. Porous Ti samples with an average porosity of 32% were processed by Powder Metallurgy with dextrin as a space holder. The samples were subjected to H2O2 treatment to form an enhanced TiO2 film, followed by a heat treatment at 400°C and 600°C aiming to the crystallization of the as-formed amorphous titanium oxide. Samples characterization was performed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The treated surfaces revealed to be made of both anatase and rutile TiO2, with groove–shaped structure and cracks on the surface of the TiO2 film. The intrinsic biocompatibility of the chemically modified porous Ti surfaces was assessed in vitro. In our cell culture tests, stem cells were found to attach and proliferate better on the chemically treated Ti surfaces compared to the control untreated Ti surfaces.


2014 ◽  
Vol 604 ◽  
pp. 175-179 ◽  
Author(s):  
Lasma Poca ◽  
Arita Dubnika ◽  
Dagnija Loca ◽  
Liga Berzina-Cimdina

In the present study, thein vitrobioactivity of silver-doped hydroxyapatite (HAp/Ag) scaffolds was investigated. HAp/Ag was prepared using two different modified wet precipitation methods. The X-ray powder diffraction (XRD) results showed, that sintered HAp/Ag samples prepared using method (I) contain two phases HAp and Ag, but samples prepared by method (II) contain three different phases - HAp, Ag and AgO. After 2 month incubation period in simulated body fluid (SBF), surface of HAp/Ag scaffolds was coated with bone-like apatite. Thickness of bone-like apatite layer increased from 2 μm up to 32 μm, increasing the incubation period.


Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2007 ◽  
Vol 336-338 ◽  
pp. 1628-1631 ◽  
Author(s):  
Ling Chen ◽  
Hong Xiang ◽  
Xiao Xi Li ◽  
Jian Dong Ye ◽  
Xiu Peng Wang ◽  
...  

Calcium phosphate cements (CPCs) are well-known orthopedic materials for filling bone. However, CPC pastes tend to disintegrate immediately when contacting with blood or other aqueous (body) fluids, which is a main limitation of its clinical applications in bone repairing, reconstruction and augmentation. To improve the anti-washout performance of CPC, modified starches such as pre-gelatinized starch, etherified starch, and esterified starch were added to the liquid phase of CPC in this work. CPC with good anti-washout performance was prepared and the effects of the modified starches on the properties of CPC were investigated. The results showed that the CPC with the modified starches were more stable in simulated body fluid than that without modified starch, especially the CPC with the etherified starch (II). X-ray diffraction analysis revealed that the modified starches did not inhibit CPC components from converting to hydroxyapatite. Furthermore, the anti-washout mechanism of the modified starches in CPC was discussed. It is concluded that the addition of the modified starches such as pre-gelatinized starch, etherified starch, and esterified starch to CPC can improve its anti-washout performance and should be of value in clinical surgery where the cement is exposed to blood.


Author(s):  
Santanu Duari ◽  
Arkadeb Mukhopadhyay ◽  
Tapan Kumar Barman ◽  
Prasanta Sahoo

The present chapter aims to determine optimal tribo-testing condition for minimum coefficient of friction and wear depth of electroless Ni-P, Ni-P-W and Ni-P-Cu coatings under lubrication using grey relational analysis. Electroless Ni-P, Ni-P-W and Ni-P-Cu coatings are deposited on AISI 1040 steel substrates. They are heat treated at suitable temperatures to improve their hardness. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction techniques. Typical nodulated surface morphology is observed in the scanning electron micrographs of all the three coatings. Phase transformation on heat treating the deposits is captured through the use of X-Ray diffraction technique. Vicker's microhardness of the coatings in their as-deposited and heat treated condition is determined. Ni-P-W coatings are seen to exhibit the highest microhardness. Friction and wear tests under lubricated condition are carried out following Taguchi's experimental design principle. Finally, the predominating wear mechanism of the coatings is discussed.


Sign in / Sign up

Export Citation Format

Share Document