Debinding Behaviors and Mechanism of Injection Molded ZrO2 Ceramics Using Kerosene as Solvents

2012 ◽  
Vol 512-515 ◽  
pp. 431-434 ◽  
Author(s):  
Wei Liu ◽  
Zhi Peng Xie ◽  
Li Li Zhang ◽  
Xian Feng Yang

In this study, low-cost kerosene with low toxicity was used as organic solvent to research the solvent debinding behavior of ceramic compact produced by injection molding. The Influences of time, temperature and solid loading on the debinding rate were investigated, the mechanism of which was also discussed. The results show that: The debinding rate increased with increasing temperature and decreased with extended time; Diffusion is the controlling factor at the initial stage and temperature was the main factor influencing the reaction rate; Dissolution is the controlling factor and concentration difference was the main factor at the later stage; The higher the solid loading of green body, the slower the debinding rate and the lower the final proportion of binder removal.

2020 ◽  
Vol 21 (9) ◽  
pp. 661-673 ◽  
Author(s):  
Mohammed Asadullah Jahangir ◽  
Chettupalli Anand ◽  
Abdul Muheem ◽  
Sadaf Jamal Gilani ◽  
Mohamad Taleuzzaman ◽  
...  

Herbal medicines are being used since ancient times and are an important part of the alternative and traditional medicinal system. In recent decades, scientists are embracing herbal medicines based on the fact that a number of drugs that are currently in use are derived directly or indirectly from plant sources. Moreover, herbal drugs have lesser side effects, albeit are potentially strong therapeutic agents. The herbal medicine market is estimated to be around US $62 billion globally. Herbal medicine has gained widespread acceptance due to its low toxicity, low cost, ease of accessibility and efficacy in treating difficult diseases. Safety and efficacy are another important factors in the commercialization process of herbal medicines. Nanotechnology has been shown to be potentially effective in improving the bioactivity and bioavailability of herbal medicines. Development of nano-phytomedicines (or by reducing the size of phytomedicine), attaching polymers with phytomedicines and modifying the surface properties of herbal drugs, have increased the solubility, permeability and eventually the bioavailability of herbal formulations. Novel formulations such as niosomes, liposomes, nanospheres, phytosomes etc., can be exploited in this area. This article reviews herbal medicines, which have prominent activity in the Central Nervous System (CNS) disorders and reported nano-phytomedicines based delivery systems.


1979 ◽  
Vol 44 (12) ◽  
pp. 3419-3424
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Dušan Husek ◽  
Emerich Erdös

The effect of particle size (0.33-1.0 mm) of the sodium carbonate on the reactivity of the active sodium carbonate prepared therefrom towards the sulfur dioxide was studied in a fixedbed integral reactor at a temperature of 150 °C. The found dependence of the reaction rate on the particle size exhibits an unexpected course; at sizes of about 0.65 mm, a distinct minimum appears. The reaction rate decreases approximately ten times in the first branch of this dependence. The controlling factor of the reactivity of sodium carbonate, however, remains to be the method of preparing the active form.


RSC Advances ◽  
2021 ◽  
Vol 11 (13) ◽  
pp. 7732-7737
Author(s):  
Fenying Wang ◽  
Dan Wang ◽  
Tingting Wang ◽  
Yu Jin ◽  
Baoping Ling ◽  
...  

Fluorescent molecularly imprinted polymer (FMIP) gains great attention in many fields due to their low cost, good biocompatibility and low toxicity. Here, a high-performance FMIP was prepared based on the autocatalytic silica sol–gel reaction.


2006 ◽  
Vol 326-328 ◽  
pp. 187-190
Author(s):  
Jong Sun Kim ◽  
Chul Jin Hwang ◽  
Kyung Hwan Yoon

Recently, injection molded plastic optical products are widely used in many fields, because injection molding process has advantages of low cost and high productivity. However, there remains residual birefringence and residual stresses originated from flow history and differential cooling. The present study focused on developing a technique to measure the birefringence in transparent injection-molded optical plastic parts using two methods as follows: (i) the two colored laser method, (ii) the R-G-B separation method of white light. The main idea of both methods came from the fact that more information can be obtained from the distribution of retardation caused by different wavelengths. The comparison between two methods is demonstrated for the same sample of which retardation is up to 850 nm.


Author(s):  
Laura Wienands ◽  
Franziska Theiß ◽  
James Eills ◽  
Lorenz Rösler ◽  
Stephan Knecht ◽  
...  

AbstractParahydrogen-induced polarization is a hyperpolarization method for enhancing nuclear magnetic resonance signals by chemical reactions/interactions involving the para spin isomer of hydrogen gas. This method has allowed for biomolecules to be hyperpolarized to such a level that they can be used for real time in vivo metabolic imaging. One particularly promising example is fumarate, which can be rapidly and efficiently hyperpolarized at low cost by hydrogenating an acetylene dicarboxylate precursor molecule using parahydrogen. The reaction is relatively slow compared to the timescale on which the hyperpolarization relaxes back to thermal equilibrium, and an undesirable 2nd hydrogenation step can convert the fumarate into succinate. To date, the hydrogenation chemistry has not been thoroughly investigated, so previous work has been inconsistent in the chosen reaction conditions in the search for ever-higher reaction rate and yield. In this work we investigate the solution preparation protocols and the reaction conditions on the rate and yield of fumarate formation. We report conditions to reproducibly yield over 100 mM fumarate on a short timescale, and discuss aspects of the protocol that hinder the formation of fumarate or lead to irreproducible results. We also provide experimental procedures and recommendations for performing reproducible kinetics experiments in which hydrogen gas is repeatedly bubbled into an aqueous solution, overcoming challenges related to the viscosity and surface tension of the water.


2012 ◽  
Vol 509 ◽  
pp. 51-55
Author(s):  
Hong Quan Liu ◽  
Fei Xiang Hao ◽  
Yi Jie Gu ◽  
Yun Bo Chen

LiFePO4 has been considered as the most promising positive electrode due to its low cost, high theoretical capacity, stability and low toxicity, all highly required in vehicle applications. In this work, LiFePO4 compound was synthesized by the solid carbothermic reduction reactions with different Li resource. The pure LiFePO4 phase was confirmed for all samples by analysis of the XRD results. The different morphologies were obtained due to different Li resources. The potential plateau of all samples is in the range from 3V to 4V. The sample (LiCO3 as the Li resource) has a higher discharge capacity of 118mAhg−1 at 0.2C 20% greater than that of the sample (LiOH as the Li resource). The reason comes maybe from nano pore characteristics, which reduce Li ion diffusion distance, and increase the utilization efficiency of material.


Author(s):  
Chang'an Li ◽  
Xin Guan ◽  
Shizhong Yue ◽  
Xi Zu Wang ◽  
Jianmin Li ◽  
...  

Thermoelectric polymers have attracted great attention because of their unique merits including low thermal conductivity, low cost, non- or low toxicity and high mechanical flexibility. However, their thermoelectric properties particularly...


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Zhidong Wang ◽  
Jun Li ◽  
Yuanyuan Ji ◽  
Peng An ◽  
Shu Zhang ◽  
...  

Although significantly develops in hepatocellular carcinoma (HCC), features of HCC remain an aggressive cancer with a dismal outcome. Traditional Chinese medicine (TCM), specifically Chinese herbal medicine (CHM), is one of the most popular complementary and alternative medicine modalities worldwide. The use of heat-clearing and detoxicating (Chinese namedqingre jiedu) CHM has attracted great attention as an alternative antitumor including HCC considering its low toxicity and high activity. Together these reports indicate that CHM is a promising anti-HCC herbal remedy in basic research. For patients with advanced HCC, CHM including formula and single combined with transcatheter arterial chemoembolization or chemotherapy is able to decrease tumor growth and the side effect of toxicity and improve overall survival, quality of life, and immune function. Due to its abundance, low cost, and safety in consumption, CHM remains a species with tremendous potential for further investigation in HCC.


2013 ◽  
Vol 1 (4) ◽  
Author(s):  
J. Zhang ◽  
J.-C. Gelin ◽  
M. Sahli ◽  
T. Barrière

Hot embossing process has emerged as a viable method for producing small, complex, precision parts in low volumes. It provides several advantages such as low-cost for molds, high replication accuracy for microfeatures and simple operation. The adaptation of this process for producing high fidelity hot embossed feedstock based metallic powders without the need for machining of the die mold is outlined. This was achieved through a combination of powder metallurgy and plastic hot embossing technologies to produce net-shape metal or hard materials components. In this paper, the manufacturing of molds that are suitable for the production of microfluidic systems using the replication technique is discussed. Variations of parameters in the replication process were investigated. An experimental rheological study was performed to evaluate the influence of the mixing parameters on the rheological behavior and thermal stability of 316L stainless steel feedstock. The effects of the solid loading on the feedstock rheological properties and tolerance control as well as mechanical properties and microstructures were investigated.


Author(s):  
Peter N Dudley ◽  
Sara N John ◽  
Miles E Daniels ◽  
Eric M. Danner

In North America, impassable, man-made barriers block access to salmonid spawning habitat and require costly restoration efforts in the remaining habitats. Evaluating restored spawning habitat quality requires information on salmon water velocity and depth preferences, which may vary in relation to other variables (e.g. water temperature). We demonstrate a generalizable, low cost method to gather and analyze this data by combining aerial redd surveys of winter-run Chinook salmon (Oncorhynchus tshawytscha), 2D hydraulic modeling, and generalized linear models to calculate spawning resource selection functions (RSFs). Our method permits the examination of interactions between environmental variables on habitat selection, which are frequently treated as independent. Our methods resulted in a RSF that shows interactions between both velocity and depth preference with changing temperature. Preferred depth increased and preferred velocity decreased with increasing temperature. Spawning RSFs for environmental variables may change as other environmental conditions (i.e. water temperature) change, thus it is importance to account for potential interactions when using or producing RSFs.


Sign in / Sign up

Export Citation Format

Share Document