Study on Residual Stress of GCr15 Bearing Steel under Ultrasonic Vibration Turning

2012 ◽  
Vol 522 ◽  
pp. 173-177
Author(s):  
Jing Lin Tong ◽  
Bo Zhao ◽  
Feng Jiao

The effects of the cutting parameters on residual stresss were investigated in common and ultrasonic vibration hard turning bearing steel GCr15 with PCBN. The residual stresses under the machined surface were measured by X-ray diffraction technique. The results obtained in this study show that residual compressive stress is produced both in common and ultrasonic turning of GCr15 bearing steel. Under the same turning condition the residual compressive produced by the ultrasonic turning is smaller than that by the common turning. Residual compressive stress can improve the fatigue performance and life of workpiece, so the cutting parameters should be optimized to get the best residual compressive stress in ultrasonic turning.

2010 ◽  
Vol 135 ◽  
pp. 238-242
Author(s):  
Yue Ming Liu ◽  
Ya Dong Gong ◽  
Wei Ding ◽  
Ting Chao Han

In this paper, effective finite element model have been developed to simulation the plastic deformation cutting in the process for a single particle via the software of ABAQUS, observing the residual stress distribution in the machined surface, the experiment of grinding cylindrical workpiece has been brought in the test of super-high speed grinding, researching the residual stress under the machined surface by the method of X-ray diffraction, which can explore the different stresses from different super-high speed in actual, and help to analyze the means of reducing the residual stresses in theory.


2018 ◽  
Vol 921 ◽  
pp. 168-176
Author(s):  
Chang Hai Zhou ◽  
Rui Yun Pan ◽  
Hai Tao Ma

The oxidation behavior of Fe-20Ni alloy under compressive stress in air was studied at 800, 900 °C. The results examined by using scanning electron microscope (SEM) and X-ray diffraction (XRD) indicates that the oxide scales were consisted of an external scale and a subscale which has an intragranular scale (above 5 h at 800 °C and 900 °C) and an intergranular scale. Compared with the unstressed specimen, the growth kinetics of external scale was accelerated by an applied compressive stress. Besides, the compressive stress induced an increase in the growths of intragranular scale and intergranular scale formed on the specimens oxidized at 900 °C. However, the effect of compressive stress on the growth of intergranular scale and intragranular scale was not obvious in the case of 800°C. In addition, cracks developed in the subscale for the specimens oxidized under 2.5 MPa compressive stress when the oxidation time exceeded 20 h.


2006 ◽  
Vol 59 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Pierre Yves Jouan ◽  
Arnaud Tricoteaux ◽  
Nicolas Horny

The aim of this paper is first a better understanding of DC reactive magnetron sputtering and its implications, such as the hysteresis effect and the process instability. In a second part, this article is devoted to an example of specific application: Aluminium Nitride. AlN thin films have been deposited by reactive triode sputtering. We have studied the effect of the nitrogen contents in the discharge and the RF bias voltage on the growth of AlN films on Si(100) deposited by triode sputtering. Stoichiometry and crystal orientation of AlN films have been characterized by means of Fourier-transform infrared spectroscopy, X-ray diffraction and secondary electron microscopy. Dense and transparent AlN layers were obtained at high deposition rates. These films have a (002) orientation whatever the nitrogen content in the discharge, but the best crystallised ones are obtained at low value (10%). A linear relationship was observed between the AlN lattice parameter "c" (perpendicular to the substrate surface) and the in-plane compressive stress. Applying an RF bias to the substrate leads to a (100) texture, and films become amorphous. Moreover, the film's compressive stress increases up to a value of 8GPa before decreasing slowly as the bias voltage increases.


Author(s):  
H. Catherine W. Skinner ◽  
Malcolm Ross ◽  
Clifford Frondel

A mineral is a naturally occurring, crystalline inorganic compound with a specific chemical composition and crystal structure. Minerals are commonly named to honor a person, to indicate the geographic area where the mineral was discovered, or to highlight some distinctive chemical, crystallographic, or physical characteristic of the substance. Each mineral sample has some obvious properties: color, shape, texture, and perhaps odor or taste. However, to determine the precise composition and crystal structure necessary to accurately identify the species, one or several of the following techniques must be employed: optical, x-ray diffraction, transmission electron microscopy and diffraction, and chemical and spectral analyses. The long history of bestowing names on minerals has provided some confusing legacies. Many mineral names end with the suffix “ite,” although not most of the common species; no standard naming practice has ever been adopted. Occasionally different names have been applied to samples of the same mineral that differ only in color or shape, but are identical to each other in chemical composition and crystal structure. These names, usually of the common rock-forming minerals, are often encountered and are therefore accepted as synonyms or as varieties of bona fide mineral species. The Fibrous Minerals list (Appendix 1) includes synonyms. A formal description of a mineral presents all the physical and chemical properties of the species. In particular, distinctive attributes that might facilitate identification are noted, and usually a chemical analysis of the first or “type” specimen on which the name was originally bestowed is included. As an example, the complete description of the mineral brucite (Mg(OH)2), as it appears in Dana’s System of Mineralogy, is presented as Appendix 3. Note the complexity of this chemically simple species and the range of information available. In the section on Habit (meaning shape or morphology) both acicular and fibrous forms are noted. The fibrous variety, which has the same composition as brucite, is commonly encountered (see Fig. 1.1D) and is known by a separate name, “nemalite.” Tables to assist in the systematic determination of a mineral species are usually based on quantitative measurements of optical properties (using either transmitted or reflected light, as appropriate) or on x-ray diffraction data.


1994 ◽  
Vol 49 (6) ◽  
pp. 812-820 ◽  
Author(s):  
Mohsen Safarpour Haghighi ◽  
Andreas Franken ◽  
Heiner Homborg

Of the isostructural series of monoclinic (PNP)[Ln(Pc)2]• xH2O compounds (Ln = La ••• Tm) the crystal structures of the complex salts of tervalent La (1), Gd (2) and Tm (3) have been determined by single crystal X-ray diffraction analysis. Unit cell data for 2: space group P21/c; a = 15.172(8), b = 20.826(2), c = 25.876(3) Å, β = 95.19(3)°, V - 8143(4) Å3, Z = 4; 1 and 3 are isostructural with 2. The lanthanide ion occupies the center of a nearly ideal square antiprism, although the two staggered phthalocyanine rings are severely distorted in an unsymmetrical funnel-shaped fashion due to electronic, steric, and packing influences in the crystal lattice. Steric effects dictate also the geometry of the PNP cation, which adopts a hybrid conformation whose structural characteristics are between the common linear and bent conformers with medium short P-N distances (1.562 Å) and large P-N-P angles in the range 165.6° (1) > 158.3° (2) > 156.1° (3). The strong IR bands at ca. 1375 cm-1 assigned to the asym. (P-N) stretch are diagnostic for this hybrid conformation. The presence of water of crystallization in the periphery of the diphthalocyanine anion is confirmed. The shortest contact distance is observed to one of the bridging nitrogen atoms of the Pc2- ligand (3.02 Å) indicating a weak (HO-H•••N) hydrogen bond


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2400 ◽  
Author(s):  
Zoulikha Hebboul ◽  
Amira Ghozlane ◽  
Robin Turnbull ◽  
Ali Benghia ◽  
Sara Allaoui ◽  
...  

We present a cost- and time-efficient method for the controlled preparation of single phase La(IO3)3 nanoparticles via a simple soft-chemical route, which takes a matter of hours, thereby providing an alternative to the common hydrothermal method, which takes days. Nanoparticles of pure α-La(IO3)3 and pure δ-La(IO3)3 were synthesised via the new method depending on the source of iodate ions, thereby demonstrating the versatility of the synthesis route. The crystal structure, nanoparticle size-dispersal, and chemical composition were characterised via angle- and energy-dispersive powder X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy.


2012 ◽  
Vol 562-564 ◽  
pp. 350-354
Author(s):  
Jian Hua Fang ◽  
Jiu Wang ◽  
Jiang Wu ◽  
Bo Shui Chen ◽  
Ling Dong

A N-containing additive, amide type modified rapeseed oil (named as NRO), was prepared by chemical modification of rapeseed oil and characterized by infrared spectrum The friction and wear performances of AZ91D magnesium alloy against GCr15 bearing steel under the lubrication of rapeseed oil formulated with NRO were evaluated on a SRV tribotester. The topographies and the chemical species of the worn surfaces of magnesium alloy were analyzed by a scanning electron microscope (SEM) and an X-ray photoelectron spectroscope (XPS), respectively. The results indicated that the friction and wear of the magnesium alloy—steel tribomates could be effectively reduced by formulating NRO into rapeseed oil lubricant. The friction coefficients and the wear volumes of magnesium alloy decreased with increasing contents of NRO. The surface lubricated with NRO-doped rapeseed oil was characterized by less wear as compared with that lubricated with neat rapeseed oil. The enhanced anti-wear and friction-reducing abilities of rapeseed oil by NRO in the lubrication of magnesium alloy against steel were ascribed to the formation of a composite boundary lubrication film due to the strong adsorption of NRO and rapeseed oil onto the lubricated surfaces and their tribochemical reactions with magnesium alloy.


2015 ◽  
Vol 809-810 ◽  
pp. 195-200
Author(s):  
Constatin Rotariu ◽  
Sevasti Mitsi ◽  
Dragos Paraschiv ◽  
Octavian Lupescu ◽  
Sergiu Lungu ◽  
...  

In this paper we analyze the influence of cutting parameters on the surface quality, surface roughness respectively, processed by turning when heat treated bearing steel, also called hard turning, and processing by turning of bearing steel without heat treatment. We set parameters of the cutting regime influencing the achievement of roughness surfaces which must be within the predetermined requirements if bearing rings exceeding 500 mm in diameter. This analysis will be done by statistical methods using the software Minitab 14.


2006 ◽  
Vol 532-533 ◽  
pp. 528-531 ◽  
Author(s):  
Bang Yan Ye ◽  
Bo Wu ◽  
Jian Ping Liu ◽  
Xiao Chu Liu ◽  
Xue Zhi Zhao

Theoretical analysis and experiments on bearing race show that a suitable residual compressive stress on roll path of bearing race can prolong its contact fatigue life. However, residual tensile stress is often found on workpiece surface of bearing race. To actively control the residual stress state and improve fatigue life of bearing part, a new method of pre-stress hard cutting is applied. In this paper, the principle of pre-stress hard cutting for bearing race is introduced as well as the experiments on it. In the experiments, residual stress, hardness and roughness of machined surface are measured and analyzed. Moreover, micro-topography and texture characteristics of machined surface are investigated and experimental results are compared with that by grinding. It is found that we can get residual compressive stress and fine quality on machined surface of bearing race by pre-stress hard cutting and increase its productivity as well.


Sign in / Sign up

Export Citation Format

Share Document