Research on the Characterization of Ultra-Smooth K9 Glass Surface Polished by Nanoparticle Colloid Jet Machining

2014 ◽  
Vol 609-610 ◽  
pp. 552-556
Author(s):  
Xiao Zong Song ◽  
Fei Hu Zhang

In this work, optical K9 glass surface has been flattened by nanoparticle colloid jet machining, which is an ultra-smooth surface processing technique utilizing surface chemical effect between work surface atoms and nanoparticles in alkaline colloid to remove the uppermost surface atoms. The surface removal process of nanoparticle colloid jet machining has been investigated through K9 glass polish experiments. And the characterizations of ultra-smooth K9 glass surface polished by nanoparticle colloid jet machining have also been studied in this paper. Surface profiler and atomic force microscopy (AFM) are used to observe the surface microscopic morphological characteristics of K9 glass sample before and after polishing by nanoparticle colloid jet machining. The measurement results of processed surface prove that the primary scratches on the original surface have been completely wiped off by nanoparticle colloid jet machining and the roughness of the K9 glass surface has been improved to be less than 1 nm (Rq). Autocovariance (ACF) is investigated along a cross section of the K9 glass surface to determine the dominant spatial frequencies. The ACF curves show that the surface morphology of K9 glass processed by nanoparticle colloid jet machining is completely different from the preprocessed surface. The final K9 glass surface has been flattened by nanoparticle colloid jet machining. The microscopic morphological profile of the final K9 glass surface becomes increasingly smooth and eventually close to a flat state.

2012 ◽  
Vol 426 ◽  
pp. 396-399 ◽  
Author(s):  
Xiao Zong Song ◽  
Yong Zhang ◽  
Fei Hu Zhang

In this paper, ultra-precision shaping and ultra-smooth polishing investigations have been done upon a high-purity quartz glass substrate with an aspheric surface in nanoparticle colloid jet machining, which is an ultra smooth surface processing technique utilizing surface chemical reaction between work surface atoms and nanoparticles to remove the uppermost surface atoms. The shaping and polishing characters of high-purity quartz glass in nanoparticle colloid jet machining has been researched. The surface profile of the high-purity quartz glass workpiece before and after shaping has been measured by surface profilometer. And the surface microscopic morphological characteristics of high-purity quartz glass surface polished by nanoparticle colloid jet machining have been observed by atomic force microscopy (AFM). The measurement results indicate that nanoparticle colloid jet machining has good shaping ability for surface shape correction in ultra-precision machining. And the AFM observation results show that the roughness of the high-purity quartz glass surface has been reduced from 1.919 nm RMS to 0.784 nm RMS by nanoparticle colloid jet machining.


2015 ◽  
Vol 638 ◽  
pp. 98-103 ◽  
Author(s):  
Iuliana Stoica ◽  
Andreea Irina Barzic ◽  
Magdalena Aflori ◽  
Camelia Hulubei ◽  
Valeria Harabagiu ◽  
...  

Surface morphological characteristics of a copolyimide film prepared from a fluorine-based dianhydride combined with an aliphatic siloxane-based diamine and an aromatic containing ether linkages one, were studied before and after oxigen plasma treatment using atomic force microscopy (AFM). The three-dimensional texture parameters calculated from the AFM data have highlighted a more pronounced surface morphology (higher average roughness and developed interfacial area ratio), improved bearing properties and no predominant orientation, as the plasma exposure time was increased from 6 to 10 minutes, using the same power (40 W). The reactive groups generated on the binding surface have facilitated the interaction with a biocidal agent, such as silver nitrate. This creates silver-containing nanoparticles, of about 120-150 nm, uniformly distributed on the copolymer surface, with a density of 10±2 particles/μm2. The functionalization with the biocidal agent of the flourinated copolyimide surface was conducted for testing its antimicrobial properties, namely the inhibition/destruction of Escherichia coli bacterium.


2011 ◽  
Vol 291-294 ◽  
pp. 1759-1763 ◽  
Author(s):  
Xiao Zong Song ◽  
Yong Zhang ◽  
Fei Hu Zhang

In this paper, ultra-precision shaping and polishing experiments have been done to research the shaping and polishing characters of nanoparticle colloid jet machining. A high-purity quartz glass sample with aspheric surface profile was employed as workpiece and polished by nanoparticle colloid jet machining. We utilized surface profilometer to measure the surface profiles of workpiece before and after shaping by nanoparticle colloid jet machining. The measurement results indicate that the nanoparticle colloid jet machining has good shaping ability to satisfy the demands for surface shape correction in ultra-precision machining. Atomic force microscopy (AFM) was utilized to observe the surface microscopic morphological characteristics of the workpiece surface polished by nanoparticle colloid jet machining. The observation results show that the roughness of the workpiece surface has been reduced from 1.919 nm RMS to 0.784 nm RMS by nanoparticle colloid jet machining. Based on the atomic force microscopy observation results, power spectral density analyses have been done to evaluate the polishing performance of the nanoparticle colloid jet machining.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria-Argyro Karageorgou ◽  
Dimosthenis Stamopoulos

AbstractRadiolabeled magnetic nanoparticles are promising candidates as dual-modality-contrast-agents (DMCA) for diagnostic applications. The immunocompatibility of a new DMCA is a prerequisite for subsequent in vivo applications. Here, a new DMCA, namely Fe3O4 nanoparticles radiolabeled with 68Ga, is subjected to immunocompatibility tests both in vitro and in vivo. The in vitro immunocompatibility of the DMCA relied on incubation with donated human WBCs and PLTs (five healthy individuals). Optical microscopy (OM) and atomic force microscopy (AFM) were employed for the investigation of the morphological characteristics of WBCs and PLTs. A standard hematology analyzer (HA) provided information on complete blood count. The in vivo immunocompatibility of the DMCA was assessed through its biodistribution among the basic organs of the mononuclear phagocyte system in normal and immunodeficient mice (nine in each group). In addition, Magnetic Resonance Imaging (MRI) data were acquired in normal mice (three). The combined OM, AFM and HA in vitro data showed that although the DMCA promoted noticeable activation of WBCs and PLTs, neither degradation nor clustering were observed. The in vivo data showed no difference of the DMCA biodistribution between the normal and immunodeficient mice, while the MRI data prove the efficacy of the particular DMCA when compared to the non-radiolabeled, parent CA. The combined in vitro and in vivo data prove that the particular DMCA is a promising candidate for future in vivo applications.


2013 ◽  
Vol 741 ◽  
pp. 67-72 ◽  
Author(s):  
Gheorghe I. Gheorghe ◽  
Liliana Laura Badita

Total hip prosthesis (THP) is the most success of the 20th century in orthopaedic biomedical engineering. However due to difficult conditions within the human body its durability is generally limited to 15-16 years. THP is a bio-tribosystem, on which many mechanical, thermal, chemical and biological factors act. This paper presents the results of an analysis regarding the topography and tribological parameters of femoral heads structures before and after TiN coating. We report on the synthesis of TiN thin films on steel substrates by pulsed laser deposition (PLD) method for improving the mechanical characteristics of the structures. Adhesion resistance of the coating on the sub-layer was evaluated by scratching tests accompanied by Optical Microscopy (OM), Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). As a principal result, this work points out that TiN protective coatings deposited by PLD technique with the maximum number of pulses can represent an alternative technology to ensure adhesion and scratch resistance of TiN coatings on femoral heads.


2013 ◽  
Vol 1493 ◽  
pp. 201-206
Author(s):  
Rubana Bahar Priti ◽  
Venkat Bommisetty

ABSTRACTHydrogenated nanocrystalline silicon (nc-Si:H) is a promising absorber material for photovoltaic applications. Nanoscale electrical conductivity and overall electronic quality of this material are significantly affected by film microstructure, specifically the density and dimension of grains and grain-boundaries (GB). Local charge distribution at grains and grain/GB interfaces of nc-Si:H was studied by Electrostatic Force Microscopy (EFM) in constant force mode under illumination of white LED. Bias voltage from -3V to +3V was applied on the tip. Scanning Kelvin Force (KFM) images were taken before and after illumination to study the change in surface photovoltage (SP). EFM and KFM analysis were combined with film topography to draw a correlation between surface morphology and nanoscale charge distribution in this material. After illumination, small blister like structures were observed whose size and density increase with time. Raman spectroscopy confirmed these new structures as nanocrystalline silicon. This change was assumed due to relaxation of strained Si-Si bonds as an effect of photo response. Nanocrystalline grain interiors were at lower potential and amorphous grain boundaries were at higher potential for negative bias; it was opposite for positive bias. Change in polarity in bias voltage reversed the polarity of the potential in grains and GBs indicating the dominance of negative type of defects. Further study with current sensing AFM in dark and illumination with variable bias voltages will be able to identify the type and density of defects in grains and grain/GB interfaces.


2015 ◽  
Vol 29 (25n26) ◽  
pp. 1542039
Author(s):  
X. Wang ◽  
A. P. Liu ◽  
X. H. Yang

The design of atomic force microscopy (AFM) with high resolution is introduced in this paper. Mainly, we have developed the system design of the apparatus based on tunneling. AFM.IPC-208B, this kind of apparatus combines scanning tunnel microscopy (STM) and AFM availability, and its lens body with original frame enhances the capability of the machine. In order to analyze the performance of AFM.IPC-208B, as a new tool in the field of Life Science, we make use of the system to study natural mica and molecular protein structures of Cattle-insulin and human antibody immunoglobulin G (IgG) coupled with staphylococcus protein A (SPA). As the results of new applications, the resolution of AFM.IPC-208B is proved to be 0.1 nm, and these nanometer measurement results provide much valuable information for the study of small molecular proteins and HIV experiments.


2021 ◽  
Vol 22 (12) ◽  
pp. 6472
Author(s):  
Beata Kaczmarek-Szczepańska ◽  
Marcin Wekwejt ◽  
Olha Mazur ◽  
Lidia Zasada ◽  
Anna Pałubicka ◽  
...  

This paper concerns the physicochemical properties of chitosan/phenolic acid thin films irradiated by ultraviolet radiation with wavelengths between 200 and 290 nm (UVC) light. We investigated the preparation and characterization of thin films based on chitosan (CTS) with tannic (TA), caffeic (CA) and ferulic acid (FA) addition as potential food-packaging materials. Such materials were then exposed to the UVC light (254 nm) for 1 and 2 h to perform the sterilization process. Different properties of thin films before and after irradiation were determined by various methods such as Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimeter (DSC), mechanical properties and by the surface free energy determination. Moreover, the antimicrobial activity of the films and their potential to reduce the risk of contamination was assessed. The results showed that the phenolic acid improving properties of chitosan-based films, short UVC radiation may be used as sterilization method for those films, and also that the addition of ferulic acid obtains effective antimicrobial activity, which have great benefit for food packing applications.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Sign in / Sign up

Export Citation Format

Share Document