Adhesive Distribution and Global Deformation between Hybrid Joints

2015 ◽  
Vol 651-653 ◽  
pp. 1465-1471 ◽  
Author(s):  
Dirk Landgrebe ◽  
Bernd Mayer ◽  
Stephan Niese ◽  
Holger Fricke ◽  
Ivo Neumann ◽  
...  

In multi-material-design, e.g. in the automotive industry, mechanical joining processes like self-pierce riveting are well established, because of their amount of advantages. However, adhesive bonding with one-component structural adhesives is increasingly being used. The combination of the specific advantages of both joining techniques in the form of hybrid joints leads to synergies of quality and reliability, such as high corrosion resistance and better damping properties. A critical issue is the generation of global deformations of the different parts of the mechanical joints. These global deformations of the sheet metal between two or more mechanical connectors (e.g. rivets) are caused by the formation of adhesive bags during the riveting process, before the adhesive curing takes place. This research focuses on the time-dependent formation process of these bags. The aim is to achieve a reduction of global deformations based on detailed knowledge of the adhesive flow during the manufacturing of the joint by means of experiments and simulations. For this purpose experimental techniques and measurement methods for deformations over time are presented for different setups of hybrid joint types of self-piercing rivets in combination with adhesive bonding. The challenge is to track rapid and small surface deformations very accurately in the ongoing mechanical joining process. High-speed optical measurement technology like Point-Tracking and surface scanning are used to track the resulting deformations experimentally. Numerical investigations, which include the interaction of the solid matter influenced in the mechanical joining process and the fluid adhesive, are presented. On the basis a fully coupled fluid-structure interaction simulation of a single hybrid joint, a surrogate model for a multi-point hybrid joint is developed. The comparison of experimental data with simulations allows deriving the pressure distribution and flow velocities inside the adhesive layer. The influence of various parameters can be interpreted based on the physics of the interacting system, ultimately resulting in optimization helpful to the automotive industry.

Author(s):  
Ayça Küçükoğlu ◽  
Fatih Karpat

Nowadays the use of thermoplastic materials has been increasing steadily, especially in automotive industries because of its positive effects on vehicle weight which is directly related to fuel consumption. These materials also provide a cost reduction for companies comparing with the steel or other similar materials. The other benefits of the thermoplastic materials are their high stiffness, excellent crashworthiness due to their energy-absorption characteristics, strength-to-weight ratios, fatigue and optimum design. Through their structure occurred by the polymer resins, thermoplastic materials can physically become a homogenized liquid when heated and hard when cooled. The thermoplastic materials are able to reheat, remolded and have good thermal and chemical stability. Also, these materials can be easily recycled which provides a lower environmental impact on the automotive industry. Due to the advantages of the thermoplastic materials, automotive industries have been using these technology in vehicle parts such as door panels, seat backs, load floor, engine cover, front end module, airbag housing, crash boxes, bumpers, instrument panel, air intake manifold, air duck, cross car beam, pedal brackets, gas tank carrier, etc. In order to produce the thermoplastic materials, a number of different methods (i.e. mechanical fastenings, ultrasonic assembly, metal inserts, snap fits, electromagnetic and heat welding, solvent/adhesive bonding) are proposed in the literature and most of them are successfully carried out in industrial applications. However, the identifying the joining technique according to the application area is an important issue to obtain appropriate material. Therefore, this paper presents a literature review of joining methods for thermoplastic materials and classifies the methods according to the structure of the joining technique. Within this context, more than 50 studies about joining techniques for thermoplastic materials are considered the methods are grouped into three main categories: chemical joining techniques, mechanical joining techniques, and thermal joining techniques. Chemical joining methods melt the surfaces of the materials by using a chemical solvent. By using the solvent, one plastic material is joined to itself or the material is joined to another type plastic that dissolves in the same solvent. In mechanical joining techniques, the materials are bonded by using some physical methods such as clipping, clamping, screwing, riveting, etc. Similarly, in thermal joining techniques the surface of the materials to be joined are heated and a pressure is applied until the thermoplastic material is formed. As a result of the review, the differences and efficiency of the joining methods are pointed out in the study with paired comparisons. Moreover, the real life applications of joining methods for thermoplastic materials in the automotive industry are presented. In this paper, effects of the joining techniques on pedestrian and occupant safety are also reviewed by taking into account the high-stress concentration factor, the inconvenient manufacturing process and, the reaction force peaks. Finally, the future challenges of the three categorized are summarized.


2020 ◽  
Vol 10 (11) ◽  
pp. 3962
Author(s):  
Franklin Domínguez ◽  
Luis Carral

The advantages of laminates in terms of the chemical properties and mechanical properties/weight relationship have motivated several applications of fiber-reinforced plastic (FRP) composites in naval constructions due to the reduction in structural weight. This weight advantage has motivated multiple investigations dedicated to dissimilar material joints. We present a methodology for the interlaminar stress calculations of a tubular hybrid joint between an FRP panel and a steel panel through tubular reinforcements. The proposed formulas allow the estimation of the shear and normal stresses on the adhesive, which are generated in the bonding angle of the tubular hybrid joint. The stresses generated at the adhesive bonding ends influence on the adherent’s adjacent layer. A failure criterion is shown to check the accomplishment of the resulting stresses in the adherent laminate. Finally, the proposed formulas are validated using the finite element method and compared with the obtained interlaminar stresses.


2014 ◽  
Vol 601 ◽  
pp. 25-28 ◽  
Author(s):  
Tomasz Sadowski ◽  
Marcin Kneć ◽  
Przeymysław Golewski

Hybrid joining of structural parts (e.g. [3-1) is relatively new approach to create more safe and reliable connection of the critical part of engineering structures. In this paper we consider hybrid joint consisting of 2 aluminum stripes and an angle bar (e.g. [7]) joined by 2 simple techniques: hot spot welding (HSW) and adhesive bonding (AB). The samples were subjected to fatigue tests in order to find fatigue response at different level of load amplitude. New method of plastic deformation measurement during fatigue was proposed with application of Digital Image Correlation (DIC) method. Numerical analysis of the hybrid joint fatigue response was proposed in the paper taking into account both: gradual degradation of the bonding layer and plastic damage in the aluminium strips due to cyclic loading.


2011 ◽  
Vol 473 ◽  
pp. 237-242 ◽  
Author(s):  
Marco Alfano ◽  
Giuseppina Ambrogio ◽  
Luigino Filice ◽  
Franco Furgiuele ◽  
Enrico Gallus ◽  
...  

Aluminum (Al) and Magnesium (Mg) alloys are nowadays widely employed in order to produce lightweight automotive and aeronautical components and to gain fuel saving and reduced emissions. However, the joining of Al and Mg alloys poses well known technical problems and the application of conventional joining techniques, e.g. welding, may be ineffective. On the other hand, adhesive bonding may be considered as a candidate replacement of the traditional techniques and for this reason it has been recently proposed as an alternative technology for Al/Mg joints. In particular, it has been demonstrated that adhesive bonding, in conjunction with state-of-the-art surface treatments, can provide Al/Mg joint with enhanced strength. However, in order to evaluate the potential of adhesive bonding to outperform the conventional joining techniques a systematic comparative analysis is needed. Therefore, the aim of this work is to supplement the existing studies on Al/Mg bonding providing a comparative analysis between Al/Mg joints prepared using gas metal arc (MIG) welding, riveting and adhesive bonding. Probably, the use of adhesive bonding as complementary joining process will be the industrial answer to the hybrid joints performance needs.


Author(s):  
Z. Liliental-Weber ◽  
C. Nelson ◽  
R. Ludeke ◽  
R. Gronsky ◽  
J. Washburn

The properties of metal/semiconductor interfaces have received considerable attention over the past few years, and the Al/GaAs system is of special interest because of its potential use in high-speed logic integrated optics, and microwave applications. For such materials a detailed knowledge of the geometric and electronic structure of the interface is fundamental to an understanding of the electrical properties of the contact. It is well known that the properties of Schottky contacts are established within a few atomic layers of the deposited metal. Therefore surface contamination can play a significant role. A method for fabricating contamination-free interfaces is absolutely necessary for reproducible properties, and molecularbeam epitaxy (MBE) offers such advantages for in-situ metal deposition under UHV conditions


Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.


Author(s):  
W. Tillmann ◽  
L. Wojarski ◽  
T. Henning

AbstractEven though the buildup rate of laser powder bed fusion processes (LPBF) has steadily increased in recent years by using more and more powerful laser systems, the production of large-volume parts is still extremely cost-intensive. Joining of an additively manufactured complex part to a high-volume part made of conventional material is a promising technology to enhance economics. Today, constructors have to select the most economical joining process with respect to the individual field of application. The aim of this research was to investigate the hybrid joint properties of LBPF and conventionally casted 18MAR300 nickel maraging steel depending on the manufacturing process and the heat treatment condition. Therefore, the microstructure and the strength of the hybrid joints manufactured by LPBF or vacuum brazing were examined and compared to solid material and joints of similar material. It was found that the vacuum-brazed hybrid joints using a 50.8-μm-thick AuNi18 foil provide a high tensile strength of 904 MPa which is sufficient for a broad field of application. Furthermore, the additively manufactured hybrid samples offered with 1998 MPa a tensile strength more than twice as high but showed a considerable impact of buildup failures to the strength in general.


2014 ◽  
Vol 8 (1) ◽  
pp. 839-845 ◽  
Author(s):  
Wu Weibin ◽  
Feng Yue ◽  
Du Junyi ◽  
Xu Pengbo ◽  
Feng Yunlin ◽  
...  

New standards in the automotive industry highlighted the situation of the actual operation of the alternator and a variety of harsh environment simulation limit test. Using new standards in the automotive industry as a guide, this article presents a virtual instrument based on the durability of automobile generator integrated test system. The design adopt virtual instrument technology in designing the system, Graphic language, LabVIEW is applied in writing measure-control program. The system uses a lot of features on LABVIEW, including Data acquisition, control of serials port, etc. Test implementation uses the host computer via RS232 and RS485 communication port and the data acquisition card, NI PCI- 6221, to control the frequency hybrid motor, temperature control box, electronic loads and other intelligent devices, and to simulate a variety of automotive alternator working conditions and real-time monitoring to monitor the status of generators. Using this system, two separate automobile alternators can be tested in terms of high-speed vehicle impact and high temperature durability test and electrical performance test and other tests at the same time. As a result, the generator speed measurement error is within 1%, the control error is within 2%, voltage and current measurement errors were within 0.5% and 0.4%, which meets the requirements.


2013 ◽  
Vol 465-466 ◽  
pp. 642-646 ◽  
Author(s):  
Abu Bakar Mohd Hadzley ◽  
Mohamad Raffi Nurul Fatin ◽  
Raja Abdullah Raja Izamshah ◽  
Nur Izan Syahriah Hussein ◽  
Ahmad Siti Sarah ◽  
...  

The high speed machining (HSM) of gray cast iron for manufacture mold and dies involve many different cutting tool from deep hole drills to smallest ball nose end mills [. Due to the demand of fast and high productivity, high speed machining (HSM) has been increasingly used to produce mold and dies that are mostly used in automotive industry especially for stamping dies components. The process of HSM sometimes combined together with manual polishing to enhance the die surface into fine mirror finish. Although the manual polishing strongly depends by experience and skill of workers, this technique is the preferable option for polishing of moulds and dies. However, such extensive manual polishing will provide some drawback because of many human factors such as pressure and technique of polishing individual person uses. Therefore, the application high speed machining in manufacturing is still demanding as it can improve surface finishing by reducing manual polishing, reportedly account for up to 30% of the total time [2].


Sign in / Sign up

Export Citation Format

Share Document