Investigation on the Mechanical Properties and Formability of Ti3Al2.5V Tubes Deformed at Elevated Temperatures

2016 ◽  
Vol 716 ◽  
pp. 973-980
Author(s):  
Enrico Simonetto ◽  
Giulia Venturato ◽  
Stefania Bruschi ◽  
Andrea Ghiotti

Titanium and titanium alloys are largely used in aircrafts to manufacture piping and structural components, thanks to the high strength-to-weight ratio and the excellent corrosion resistance. However, despite the advantages in terms of mechanical and chemical performances, they present significant limits when shaped at room temperature due to the high strength and the low ductility. The use of temperature-assisted processes might represent an interesting option to overcome the above-mentioned limitations, although the effects on the microstructural and chemical properties should be accurately considered.The paper presents the results of investigations on the Ti3Al2.5V alloy, carried out to evaluate the influence that the thermal cycle parameters have on the mechanical properties and microstructural characteristics of tubes draw bent at elevated temperatures. Tensile tests at elevated temperatures have been performed on specimens directly cut from tubes in order to get the flow-stress curves and elastic material properties. With reference to typical industrial process conditions, different heating rates and soaking times were tested to analyse the influence on the microstructure, namely the grain size, the precipitation of secondary phases and superficial oxidation. Scanning Electron Microscopy and micro-hardness measurement techniques were used to assess the post-forming characteristics at different temperature and strain rate conditions.

Author(s):  
Ben Young ◽  
Hai-Ting Li

High strength steels are becoming increasingly attractive for structural and architectural applications due to their superior strength-to-weight ratio which could lead to lighter and elegant structures. The stiffness and strength of high strength steels may reduce after exposure to fire. The post-fire mechanical properties of high strength steels have a crucial role in evaluating the residual strengths of these materials. This paper presents an experimental investigation on post-fire mechanical properties of cold-formed high strength steels. A series of tensile coupon tests has been carried out. The coupon specimens were extracted from cold-formed square hollow sections with nominal yield stresses of 700 and 900 MPa at ambient temperature. The specimens were exposed to various elevated temperatures ranged from 200 to 1000 °C and then cooled down to ambient temperature before tested to failure. Stress-strain curves were obtained and the mechanical properties, namely, Young’s modulus, yield stress (0.2% proof stress) and ultimate strength, of the cold-formed high strength steel materials after exposure to elevated temperatures were derived. The post-fire retention factors that obtained from the experimental investigation were compared with existing predictive equations in the literature. New predictive equations are proposed to determine the residual mechanical properties of high strength steels after exposure to fire. It is shown that the proposed predictive equations are suitable for both cold-formed and hot-rolled high strength steel materials with nominal yield stresses ranged from 690 to 960 MPa.


1988 ◽  
Vol 125 ◽  
Author(s):  
Richard C. Dickinson

ABSTRACTCarbon/Carbon is a highly desirable material for use at elevated temperatures in structural applications due to its high strength-to-weight ratio and increasing strength with increasing temperatures.This presentation will survey the general methods used to fabricate and apply oxidation protection systems to these composites. This will be followed by an overview of typical physical and mechanical properties and selected results from oxidation rate studies.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2600
Author(s):  
Milad Bazli ◽  
Milad Abolfazli

Fibre-reinforced polymer (FRP) composite is one of the most applicable materials used in civil infrastructures, as it has been proven advantageous in terms of high strength and stiffness to weight ratio and anti-corrosion. The performance of FRP under elevated temperatures has gained significant attention among academia and industry. A comprehensive review on experimental and numerical studies investigating the mechanical performance of FRP composites subjected to elevated temperatures, ranging from ambient to fire condition, is presented in this paper. Over 100 research papers on the mechanical properties of FRP materials including tensile, compressive, flexural and shear strengths and moduli are reviewed. Although they report dispersed data, several interesting conclusions can be drawn from these studies. In general, exposure to elevated temperatures near and above the resin glass transition temperature, Tg, has detrimental effects on the mechanical characteristics of FRP materials. On the other hand, elevated temperatures below Tg can cause low levels of degradation. Discussions are made on degradation mechanisms of different FRP members. This review outlines recommendations for future works. The behaviour of FRP composites under elevated temperatures provides a comprehensive understanding based on the database presented. In addition, a foundation for determining predictive models for FRP materials exposed to elevated temperatures could be laid using the finding that this review presents.


Alloy Digest ◽  
1994 ◽  
Vol 43 (11) ◽  

Abstract CARLSON ALLOYS C600 AND C600 ESR have excellent mechanical properties from sub-zero to elevated temperatures with excellent resistance to oxidation at high temperatures. It is a solid-solution alloy that can be hardened only by cold working. High strength at temperature is combined with good workability. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: Ni-470. Producer or source: G.O. Carlson Inc.


2020 ◽  
Vol 10 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Saurabh Dewangan ◽  
Suraj Kumar Mohapatra ◽  
Abhishek Sharma

PurposeTitanium (Ti) alloys are in high demand in manufacturing industries all over the world. The property like high strength to weight ratio makes Ti alloys highly recommended for aerospace industries. Ti alloys possess good weldability, and therefore, they were extensively investigated with regard to strength and metallurgical properties of welded joint. This study aims to deal with the analysis of strength and microstructural changes in Ti-6Al-4V (Grade 5) alloy after tungsten inert gas (TIG) welding.Design/methodology/approachTwo pair of Ti alloy plates were welded in two different voltages, i.e. 24 and 28 V, with keeping the current constant, i.e. 80 A It was a random selection of current and voltage values to check the performance of welded material. Both the welded plates were undergone through some mechanical property analysis like impact test, tensile test and hardness test. In addition, the microstructure of the welded joints was also analyzed.FindingsIt was found that hardness and tensile properties gets improved with an increment in voltage, but this effect was reverse for impact toughness. A good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this work. Heat distribution in both the welded plates was simulated through ANSYS software to check the temperature contour in the plates.Originality/valueA good corroboration between microstructure and mechanical properties, such as tensile strength, hardness and toughness, was reported in this study.


2018 ◽  
Vol 760 ◽  
pp. 108-113 ◽  
Author(s):  
Lenka Scheinherrová ◽  
Monika Čáchová ◽  
Michaela Petříková ◽  
Lukáš Fiala ◽  
Eva Vejmelková ◽  
...  

In this paper, the effect of elevated temperatures on the mechanical and basic properties of two different newly-designed high-strength concretes is studied. The studied materials were prepared from Portland cement, steel fibers, reactive finely milled quartz powder and quartz sand, silica fume, plasticizer, and with a relatively low water/cement ratio of 0.24. The samples were stored in water environment for the first 28 days of hydration to achieve better mechanical properties. Then, after pre-drying at 105 °C to constant mass, the materials were exposed to elevated temperatures of 600 °C and 1000 °C where they were kept for 2 hours. The basic physical properties, such as matrix density, bulk density and open porosity were determined as a function of temperature. Mechanical properties (compressive and flexural strength) were also studied. The measured parameters exhibited a high dependence on temperature and the obtained results pointed to the structural changes of the studied materials. Spalling was not observed because of the pre-drying treatment.


2018 ◽  
Vol 877 ◽  
pp. 20-25
Author(s):  
P.K. Mandal

The cast Al-Zn-Mg 7000 alloy has become one of the most potential structural materials in many engineering fields such as aircraft body, automotive casting due to their high strength to weight ratio, strong age hardening ability, competitive weight savings, attractive mechanical properties and improvement of thermal properties. The cast aluminium alloy has been modified of surface layer through a solid-state technique is called friction stir process (FSP). But basic principle has been followed by friction stir welding (FSW). This process can be used to locally refine microstructures and eliminate casting defects in selected locations, where mechanical properties improvements can enhance component performance and service life. However, some specified process parameters have adopted during experimental works. Those parameters are tool rotation speed (720 rpm), plate traverse speed (80 mm/min), axial force (15 kN), and tool design (i.e., pin height 3.5 mm and pin diameter 3.0 mm), respectively. The main mechanism behind this process likely to axial force and frictional force acting between the tool shoulder and workpiece results in intense heat generation and plastically soften the process material. The specified ratio of rotational speed (720 rpm) to traverse speed (80 mm/min) is considered 9 as low heat input during FSP and its entails low Zn vaporization problem results as higher fracture toughness of aluminium alloy. It is well known that the stirred zone (SZ) consists of refine equiaxed grains produced due to dynamic recrystallization. FSP has been proven to innovatively enhancing of various properties such as formability, hardness and fracture toughness (32.60 MPa√m). The hardness and fracture toughness of double passes AC+FSP aluminium alloy had been investigated by performing Vicker’s hardness measurement and fracture toughness (KIC)(ASTM E-399 standard) tests. Detailed observations with optical microscopy, Vicker’s hardness measurement, SEM, TEM, and DTA analysis have conducted to analyse microstructure and fracture surfaces of double passes FSP aluminium alloy.


Author(s):  
Nao Otaki ◽  
Tomoaki Hamaguchi ◽  
Takahiro Osuki ◽  
Yuhei Suzuki ◽  
Masaki Ueyama ◽  
...  

Abstract In petroleum refinery plants, materials with high sensitization resistance are required. 347AP has particularly been developed for such applications and shows good sensitization resistance owing to its low C content. However, further improvement in high temperature strength is required for high temperature operations in complex refineries, such as delayed cokers. Recently, a new austenitic stainless steel (low C 18Cr-11Ni-3Cu-Mo-Nb-B-N, UNS No. S34752) with high sensitization resistance and high strength at elevated temperatures has been developed. In this study, the mechanical properties and microstructures of several aged specimens will be reported. By conducting several aging heat treatments in the range of 550–750 °C for 300–10,000 h on the developed steel, it was revealed that there were only few coarse precipitates that assumed sigma phase even after aging at 750 °C for 10,000 h. This indicates that the newly developed steel has superior phase stability. The developed steel drastically increased its Vickers hardness by short-term aging treatments. Through transmission electron microscopy observations, the fine precipitates of Cu-rich phase were observed dispersedly in the ruptured specimen. Therefore, the increase in Vickers hardness in short-term aging is possibly owing to the dispersed precipitation of Cu-rich phase. There was further increase in Vickers hardness owing to Z phase precipitation; however, the increment was smaller than that caused by Cu-rich phase. The newly developed alloy demonstrated excellent creep rupture strength even in the long-term tests of approximately 30,000 h, which is attributed to these precipitates.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 117 ◽  
Author(s):  
Chinmay Phutela ◽  
Nesma T. Aboulkhair ◽  
Christopher J. Tuck ◽  
Ian Ashcroft

Ti-6Al-4V is a popular alloy due to its high strength-to-weight ratio and excellent corrosion resistance. Many applications of additively manufactured Ti-6Al-4V using selective laser melting (SLM) have reached technology readiness. However, issues linked with metallurgical differences in parts manufactured by conventional processes and SLM persist. Very few studies have focused on relating the process parameters to the macroscopic and microscopic properties of parts with different size features. Therefore, the aim of this study was to investigate the effect of the size of features on the density, hardness, microstructural evolution, and mechanical properties of Ti-6Al-4V parts fabricated using a fixed set of parameters. It was found that there is an acceptable range of sizes that can be produced using a fixed set of parameters. Beyond a specific window, the relative density decreased. Upon decreasing the size of a cuboid from (5 × 5 × 5 mm) to (1 × 1 × 5 mm), porosity increased from 0.3% to 4.8%. Within a suitable size range, the microstructure was not significantly affected by size; however, a major change was observed outside the acceptable size window. The size of features played a significant role in the variation of mechanical properties. Under tensile loading, decreasing the gauge size, the ultimate and yield strengths deteriorated. This investigation, therefore, presents an understanding of the correlation between the feature size and process parameters in terms of the microscopic and macroscopic properties of Ti-6Al-4V parts manufactured using SLM. This study also highlights the fact that any set of optimized process parameters will only be valid within a specific size window.


Sign in / Sign up

Export Citation Format

Share Document