Geomaterials as Cost Effective Sorbent to Remove Fluoride from Water

2020 ◽  
Vol 870 ◽  
pp. 107-121
Author(s):  
Ebtehal A. Almaliky ◽  
Hatem Asal Gzar

As a regulated contaminants, fluorine compounds impact the health of millions of persons around the world. Adsorption method is employed to remove fluoride ions from a synthetic water using concrete waste materials as a low cost adsorbent and to evaluate its feasibility as an alternative agent to eliminate fluoride ions in aqueous solution. Influence of pH, concrete particles dosage, agitation speed, fluoride initial concentration and contact time on F− removal were investigated by using batch mode. Fluoride removal has been obtained over a wide range (3-11). The rate of adsorption was rapid at the first 4 hours, while the equilibrium has been reached within 9 hrs. The desorption study revealed that fluoride adsorption onto concrete particles was chemical in nature. The kinetic of adsorption was fitted well with second-order rate model, while the adsorption behavior obeyed Freundlich model. This study obviously presents the applicability of concrete particles as low cost adsorbent to eliminate fluoride from water.

2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2017 ◽  
Vol 61 (3) ◽  
pp. 188 ◽  
Author(s):  
Poornima G. Hiremath ◽  
Thomas Theodore

The potential of immobilized Chlorella vulgaris to remove fluoride from synthetic and real ground water samples in a fixed bed was investigated. The effect of important kinetic parameters including column bed height, feed flow rate and influent fluoride concentration of solution on fluoride removal was studied. Thomas, Yoon-Nelson, and BDST models were used to analyze the experimental data and understand the influence on biosorption performance. The models’ predictions were in good agreement with the experimental data for all the process parameters studied, indicating that the models were suitable for fixed-bed column design. Fluoride adsorption was reversible. Desorption of fluoride ions was accomplished by pumping 0.1 N HCl solution. The reusability of adsorbent was studied by subjecting column to repeated cycles of fluoride adsorption and desorption. The suitability of immobilized C. vulgaris adsorbent for fluoride removal from ground water samples of Pavagada taluk, Tumakuru district was studied in the packed column.


2021 ◽  
Author(s):  
Nima Safaei ◽  
Omar Smadi ◽  
Babak Safaei ◽  
Arezoo Masoud

<p>Cracks considerably reduce the life span of pavement surfaces. Currently, there is a need for the development of robust automated distress evaluation systems that comprise a low-cost crack detection method for performing fast and cost-effective roadway health monitoring practices. Most of the current methods are costly and have labor-intensive learning processes, so they are not suitable for small local-level projects with limited resources or are only usable for specific pavement types.</p> <p>This paper proposes a new method that uses an improved version of the weighted neighborhood pixels segmentation algorithm to detect cracks in 2-D pavement images. This method uses the Gaussian cumulative density function as the adaptive threshold to overcome the drawback of fixed thresholds in noisy environments. The proposed algorithm was tested on 300 images containing a wide range of noise representative of different noise conditions. This method proved to be time and cost-efficient as it took less than 3.15 seconds per 320 × 480 pixels image for a Xeon (R) 3.70 GHz CPU processor to determine the detection results. This makes the model a perfect choice for county-level pavement maintenance projects requiring cost-effective pavement crack detection systems. The validation results were promising for the detection of low to severe-level cracks (Accuracy = 97.3%, Precision = 79.21%, Recall= 89.18% and F<sub>1</sub> score = 83.9%).</p>


2020 ◽  
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Paolo Fabris ◽  
Marco Severin

&lt;p&gt;The Global Navigation Satellite Systems (GNSS) provide a globally extended dataset of primordial importance for a wide range of applications, such as crustal deformation, topographic measurements, or near surface processes studies. However, the high costs of GNSS receivers and the supporting software can represent a strong limitation for the applicability to landslide monitoring. Low-cost tools and techniques are strongly required to face the plausible risk of losing the equipment during a landslide event.&lt;/p&gt;&lt;p&gt;Centro di Ricerche Sismologiche (CRS) of Istituto Nazionale di Oceanografia e di Geofisica Sperimentale OGS in collaboration with SoluTOP, in the last years, has developed a cost-effective GNSS device, called LZER0, both for post-processing and real-time applications. The aim is to satisfy the needs of both scientific and professional communities which require low-cost equipment to increase and improve the measurements on structures at risk, such as landslides or buildings, without losing precision.&lt;/p&gt;&lt;p&gt;The landslide monitoring system implements single-frequency GNSS devices and open source software packages for GNSS positioning, dialoguing through Linux shell scripts. Furthermore a front-end web page has been developed to show real-time tracks. The system allows measuring real-time surface displacements with a centimetre precision and with a cost ten times minor than a standard RTK GPS operational system.&lt;/p&gt;&lt;p&gt;This monitoring system has been tested and now applied to two landslides in NE- Italy: one near Tolmezzo municipality and one near Brugnera village. Part of the device development has been included inside the project CLARA 'CLoud plAtform and smart underground imaging for natural Risk Assessment' funded by the Italian Ministry of Education, University and Research (MIUR).&lt;/p&gt;


2020 ◽  
Author(s):  
Mebrahtom Hagos ◽  
Abubeker Yimam ◽  
Kibrom Alebel Gebru

Abstract This study investigated the potential use of Eucalyptus Bark (EB) powder as an adsorbent in batch mode experiments for removal of Cu2+ from Ezana (Meli) wastewater. The discharge of untreated gold mining wastewater contaminated by Cu (II), which is threatening ecosystems and carcinogenic to the human. Since the removal by using adsorption method is cost effective and environmentally friendly, it has been widely studied by many researchers. Characterizations of Eucalyptus Bark were analyzed using proximate analysis, Fourier transform infrared (FTIR) and X-ray diffractometer (XRD). Various characterization techniques showed that the effluent discharged from the factory contains: total suspended solid (TSS), turbidity, Electrical conductivity (EC), Total dissolved solid (TDS), COD, Temperature, pH, cyanide WAD with <11°C (ppm). Atomic absorption spectroscopy study indicated that heavy metals found in the wastewater were in the order Fe2+> Cu (II) >Pb (II) >Mn> Cr (VI) >Zn > Co > Ni > Cd in ppm. The selected parameters were pH, adsorbent dosage and contacting time. The highest percentage of Cu (II) removal achieved was 92%. In this study, the adsorption data were well-fitted to the Langmuir isotherm model.


Ingeniería ◽  
2018 ◽  
Vol 23 (1) ◽  
pp. 70 ◽  
Author(s):  
Edwin Blasnilo Rua Ramirez ◽  
Fernando Jimenez Diaz ◽  
German Andres Gutierrez Arias ◽  
Nelson Iván Villamizar

Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs.Method: Firstly, a large scale 3D printer with improved technical specifications compared to traditional market options and similar price, was fabricated. By means of free software and hardware tools and easy-to-obtain alternative manufacturing materials, it was possible to decrease its manufacturing and operating costs. Then a set of study cases utilising the 3D printer in three different subject classes were designed and tested with two cohorts of students of Mechanical Engineering programme.Results: It was feasible to fabricate a cost-effective and practical 3D printer for constructing prototypes and pieces that benefit teaching and learning concepts in engineering and design areas. The experiments carried out in three subjects of engineering courses with second-year students, showed a similar trend of improving the average course grades, as it was observed in two cohorts in different terms.Conclusions: This type of low cost 3D printer obtained academic advantages as a didactic tool for the learning process in engineering and design subjects. Future work will consider applying this tool to other courses and subjects to further evaluate its convenience and effectivity.


Author(s):  
Daniel B. Hess ◽  
Brian D. Taylor ◽  
Allison C. Yoh

Bus rapid transit (BRT) is growing rapidly in popularity because it is viewed widely as an efficient and effective means to improve both transit service and patronage. This paper argues that two distinct views of BRT are emerging: ( a) BRT as a new form of high-speed, rubber-tired, rail-like rapid transit and ( b) BRT as a cost-effective way to upgrade both the quality and image of traditional fixed-route bus service. These two views carry different price tags because the cost of planning, constructing, and operating BRT depends on the complexity of new service features and on rises for BRT that offer service characteristics approaching those of light rail. This study fills a gap in the literature on the costs of BRT by examining in detail component costs–-actual costs for recently implemented services and projected costs for planned new services–-for a sample of BRT systems in North American cities. The study examined BRT costs of 14 planned and recently opened BRT systems to determine how the wide range of BRT service and technology configurations affect costs. The study found that although some of the most successful and popular new BRT systems are high-quality services operating in mixed traffic and implemented at relatively low cost, most BRT projects on the drawing boards are more elaborate, more expensive systems than many currently in service. Most new BRT projects emphasize elaborate LRT-type improvements to lines and stations in one or a few corridors rather than less splashy improvements (such as next-bus monitors, signal preemption, queue-jump lanes, and so forth) affecting more lines and modes in local transit networks. Among the 14 systems examined here, most could be characterized as light rail lite.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1719 ◽  
Author(s):  
Sanja P. Kojic ◽  
Goran M. Stojanovic ◽  
Vasa Radonic

Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology—a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young’s modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique.


Healthcare ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 143 ◽  
Author(s):  
H. Herath ◽  
Tomonori Kawakami ◽  
Masamoto Tafu

The effectiveness of regenerated chicken bone char (CBC) in fluoride removal was investigated in the present study. Heat treatment was studied as the regeneration method. Results revealed that the CBC regenerated at 673 K yielded the highest fluoride adsorption capacity, hence, 673 K was the best regenerating temperature. The study continued up to five regeneration cycles at the best regenerating temperature; 673 K. The CBC accounted to 16.1 mg F/g CBC as the total adsorption capacity after five regeneration cycles. The recovery percentage of CBC reduced from 79% at the first regeneration to 4% after five regeneration cycles. The hydroxyapatite structure of CBC was not changed during the fluoride adsorption by five regeneration cycles. The ion exchange incorporated with the chemical precipitation occurred during the fluoride adsorption. The repeated regeneration of CBC is possible and it could be used as a low cost defluoridation technique to minimize the wastage of bone char.


2013 ◽  
Vol 726-731 ◽  
pp. 695-699
Author(s):  
Li Hong ◽  
Si Xiang Wang ◽  
Yong Liu ◽  
Yue Chun Zhang

Humic acid adsorbent modified with metal ions was prepared by gel polymerization and named gel composite of metal ion and humic acid, which abbreviated GCMH to uptake fluoride from drinking water. The samples were measured by X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images. Fluoride adsorption onto the synthesized samples was investigated by batch adsorption method. In previous works, detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH, temperatures and co-existing anions. The maximum fluoride removal was obtained at pH7. Presence of HCO3− adversely affected the adsorption of fluoride. The optimum absorption conditions were at the dose of 10g/L, temperature of water of 55°Cand contact time of 6hs.


Sign in / Sign up

Export Citation Format

Share Document