Friction Stir Welding of Steel Structures - A Brief Review

2021 ◽  
Vol 890 ◽  
pp. 105-119
Author(s):  
Mihai Octavian Crăcănel ◽  
Eduard Laurențiu Niţu ◽  
Daniela Monica Iordache

Friction stir welding is a relatively new technique, developed in 1991, which, due to its advantages, has been continuously developed and applied to industrial applications. This process of joining materials in solid state is an extremely complex one because of the physical phenomena that occur during the process, which makes the research still in full development. The paper presents an analysis of recent scientific work on the use of the FSW process for the joining of steel structures. Thus, the types of steels and merged structures, the processes used and the technological parameters used are analyzed. On the basis of this analysis, the main conclusions of the studied works are summarized and the main development directions for research on the FSW process of steel structures are identified.

2012 ◽  
Vol 730-732 ◽  
pp. 715-720
Author(s):  
Telmo G. Santos ◽  
João Faria ◽  
Pedro Vilaça ◽  
R.M. Miranda

Eddy currents are based on electromagnetic induction and analysis of electrical currents on conductive materials. This method is used for thickness measurements, corrosion and defects detection, electrical conductivity and magnetic permeability measurements. Recently, it has been exploited as a materials characterization technique, namely in solid state welding, since, compared to hardness, it is based in distinct physical phenomena. Electrical conductivity is controlled by electronic mobility, while hardness depends on crystal defects and thus a scale factor exists. This paper presents results of this characterization technique applied to multipass solid state friction stir processing (FSP) of AA1100 alloy. These results were compared to microstructural analysis and hardness measurements and show that eddy current is a feasibly, reliable and expedite technique to characterize processed materials. The electrical conductivity measured by eddy currents, maps more precisely structural features, while hardness does not. Measurement of electrical conductivity field suggests having potential to constitute an alternative and/or complement to hardness evaluation with the further advantage of being a non-destructive method.


2021 ◽  
Vol 890 ◽  
pp. 120-137
Author(s):  
Mihai Octavian Crăcănel ◽  
Eduard Laurențiu Niţu ◽  
Daniela Monica Iordache

The FSW process has proven to be a promising process for joining steels and improving their characteristics. However, the use of wrongs technological parameters leads to the appearance of defects. In this study, the macro and microstructural characteristics of steel joints and their mechanical properties are analyzed, and the main types of defects of the butt steel joints are presented. The main conclusions of the works studied are summarized and the main development directions for research on the characterization of steel structures joined by the FSW process are identified.


2020 ◽  
Vol 37 ◽  
pp. 100727
Author(s):  
Xue Wang ◽  
Yanfei Gao ◽  
Martin McDonnell ◽  
Zhili Feng

1998 ◽  
Vol 4 (S2) ◽  
pp. 530-531
Author(s):  
R. D. Flores ◽  
L. E. Murr ◽  
E. A. Trillo

Although friction-stir welding has been developing as a viable industrial joining process over the past decade, only little attention has been given to the elucidation of associated microstructures. We have recently produced welds of copper to 6061 aluminum alloy using the technique illustrated in Fig. 1. In this process, a steel tool rod (0.6 cm diameter) or head-pin (HP) traverses the seam of 0.64 cm thick plates of copper butted against 6061-T6 aluminum at a rate (T in Fig. 1) of 1 mm/s; and rotating at a speed (R in Fig. 1) of 650 rpm (Fig. 1). A rather remarkable welding of these two materials results at temperatures measured to be around 400°C for 6061-T6 aluminum welded to itself. Consequently, the metals are stirred into one another by extreme plastic deformation which universally seems to involve dynamic recrystallization in the actual weld zone. There is no melting.


Author(s):  
Yogita Ahuja ◽  
Raafat Ibrahim ◽  
Anna Paradowska ◽  
Daniel Riley

Friction stir welding (FSW) is a relatively new solid state metallurgical joining technique. It flourishes on the simple principle of utilising frictional heat by the stirring motion of a non-consumable rotating tool to create the seam. Feasibility of FSW aided by a newly designed probeless tool was investigated for fabricating copper-tungsten mechanical composite. The most effective parameter combination was determined by conducting a parametric study of the probeless tool aided FSW copper. Strength of the mechanical composite fabricated at this condition was evaluated through punch shear testing. Punch shear testing established that the friction stir welded interface of the copper-tungsten composite was 87% as strong as the base metal (i.e. copper). Advantages of the designed technique have been summarised.


Author(s):  
Yousef Imani ◽  
Michel Guillot

Invented in 1991, friction stir welding (FSW) is a new solid state joining technique. This process has many advantages over fusion welding techniques including absence of filler material, shielding gas, fumes and intensive light, solid state joining, better microstructure, better strength and fatigue life, and etc. The difficulty with FSW is in the high forces involved especially in axial direction which requires use of robust fixturing and very stiff FSW machines. Reduction of FSW force would simplify implementation of the process on less stiff CNC machines and industrial robots. In this paper axial welding force reduction is investigated by use of tool design and welding parameters in FSW of 3.07 mm thick AA6061-T6 sheets at right angle. Attempt is made to reduce the required axial force while having acceptable ultimate tensile strength (UTS). It is found that shoulder working diameter and shoulder angle are the most important parameters in the axial force determination yet pin angle has minor effect. According to the developed artificial neural network (ANN) model, proper selection of shoulder diameter and angle can lead to approximately 40% force reduction with acceptable UTS. Regions of tool design and welding parameters are found which result in reduced axial force along with acceptable UTS.


Author(s):  
J. A. Ávila ◽  
H. E. Jaramillo ◽  
F. Franco

The mechanical behavior of butt welds made on AZ31B magnesium alloy plates by solid-state friction stir welding (FSW) and gas tungsten arc welding (GTAW) is presented. Fatigue, tensile strength, and hardness tests were performed. Also, fractographic analyses of the weld microstructures were conducted. Tests results show that the fatigue performance of FSW joints was superior to that of conventional welding (GTAW).


2015 ◽  
Vol 1119 ◽  
pp. 597-600
Author(s):  
Hyun Ho Jung ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
...  

Since solid state welded joint is formed from an intimate contact between two metals at temperatures below the melting point of the base materials, the structural integrity of welding depends on time, temperature, and pressure. This paper provides some of examples of friction stir welding and diffusion welding process for aerospace components. Friction stir welding process of AA2195 was developed in order to study possible application for a large fuel tank. Massive diffusion welding of multiple titanium sheets was performed and successful results were obtained. Diffusion welding of dissimilar metals of copper and stainless steel was necessary to manufacture a scaled combustion chamber. Diffusion welding of copper and steel was performed and it is shown that the optimum condition of diffusion welding is 7MPa at 890°C, for one hour. It is shown that solid state welding processes can be successfully applied to fabricate lightweight aerospace parts.


2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.


Sign in / Sign up

Export Citation Format

Share Document