FEM Simulation on Diffusion Bonding of High Purity Tungsten Target

2021 ◽  
Vol 1035 ◽  
pp. 787-791
Author(s):  
Qian Jia ◽  
Zhao Chong Ding ◽  
Yu Qi ◽  
Han Zu Li ◽  
Yong Jun Li ◽  
...  

The FEM (finite element method) simulation was used to study the diffusion bonding deformation of high purity tungsten target. The influence of different welding structure, bonding temperature on the deformation of the final high-purity tungsten target was systematically studied. Meanwhile, some microscopic properties of tungsten target were developed, such as internal stress size and distributions, strain size and distributions. Finally, physical experiments are used to verify numerical simulation results. The results show that the method of adding an intermediate layer can release the residual stress between the high-purity target and back plate. The bonding stress of high-purity tungsten target is mainly concentrated with the tungsten target and the intermediate layer in between, which is easy to fail during the later leveling process. Small deformation of bonding tungsten target can be obtained by low diffusion bonding temperature.

Author(s):  
J. Wei ◽  
S. S. Deng ◽  
C. M. Tan

Silicon-to-silicon wafer bonding by sol-gel intermediate layer has been performed using acid-catalyzed tetraethylthosilicate-ethanol-water sol solution. High bond strength near to the fracture strength of bulk silicon is obtained at low temperature, for example 100°C. However, The bond efficiency and bond strength of this intermediate layer bonding sharply decrease when the bonding temperature increases to elevated temperature, such as 300 °C. The degradation of bond quality is found to be related to the decomposition of residual organic species at elevated bonding temperature. The bubble generation and the mechanism of the high bond strength at low temperature are exploited.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 152
Author(s):  
Peng Peng ◽  
Shaosong Jiang ◽  
Zhonghuan Qin ◽  
Zhen Lu

This work fabricated a double hollow structural component of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy by superplastic forming (SPF) and reaction-diffusion bonding (RDB). The superplastic characteristic and mechanical properties of Mg-8.3Gd-2.9Y-0.8Zn-0.2Zr alloy sheets at 250–450 °C were studied. Tensile tests showed that the maximum elongation of tensile specimens was about 1276.3% at 400 °C under a strain rate of 1 × 10−3 s−1. Besides, the effect of bonding temperature and interface roughness on microstructure and mechanical properties of the reaction diffusion-bonded joints with a Cu interlayer was investigated. With the increase of temperature, the diffusion coefficient of Cu increases, and the diffusion transition region becomes wider, leading to tightening bonding of the joint. However, the bonding quality of the joint will deteriorate due to grain size growth at higher temperatures. Shear tests showed that the highest strength of the joints was 152 MPa (joint efficiency = 98.7%), which was performed at 460 °C.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266 ◽  
Author(s):  
Han Mei ◽  
Lihui Lang ◽  
Xiaoxing Li ◽  
Hasnain Ali Mirza ◽  
Xiaoguang Yang

Due to the acceptable high-temperature deformation resistance of Inconel 718, its welding parameters such as bonding temperature and pressure are inevitably higher than those of general metals. As a result of the existing punitive processing environment, it is essential to control the deformation of parts while ensuring the bonding performance. In this research, diffusion bonding experiments based on the Taguchi method (TM) are conducted, and the uniaxial tensile strength and deformation ratio of the experimental joints are measured. According to experimental data, a deep neural network (DNN) was trained to characterize the nonlinear relationship between the diffusion bonding process parameters and the diffusion bonding strength and deformation ratio, where the overall correlation coefficient came out to be 0.99913. The double-factors analysis of bonding temperature–bonding pressure based on the prediction results of the DNN shows that the temperature increment of the diffusion bonding of Inconel 718 significantly increases the deformation ratio of the diffusion bonding joints. Therefore, during the multi-objective optimization of the bonding performance and deformation of components, priority should be given to optimizing the bonding pressure and duration only.


2013 ◽  
Vol 856 ◽  
pp. 153-158
Author(s):  
Kasigavi Chandrappa ◽  
Joel Hemanth

The diffusion bonding of Ti to Ti, Ti-Cu alloy at different temperatures ranging from 673 K to 923 K under an applied stress of 100 MPa for 1 h was studied. The observation of the microstructure reveals that sound joints between the Ti-Ti and dissimilar titanium/Copper metals sheet were successfully joined by diffusion bonding process. Ti-Cu alloy without any pores or cracks can be achieved through diffusion bonding at temperatures over 873 K under the applied stress of 100 MPa for 1 h. The bond is composed of the zones, and its width increases with the increase of bonding temperature. The Micro hardness at the interface of joints bonded under different conditions was evaluated through Micro hardness testing and the fracture mode was analyzed by SEM observation.


Author(s):  
Thomas Gietzelt ◽  
Volker Toth ◽  
Manfred Kraut ◽  
Uta Gerhards ◽  
Robin Duerrschnabel

Diffusion bonding is often used on pre-machined parts to generate internal cavities, e.g. for cooling injection molding tools close to the mold cavity. Only then, the workpieces are finished to their final dimensions. In the case of micro-process devices, however, it is essential to precisely control the deformation, as otherwise uncontrollable pressure losses will occur with channel cross-sections in the sub-millimeter range. Post-processing is not possible. The most important process parameters for diffusion bonding are temperature, dwell time and contact pressure, with the bonding temperature and contact pressure acting in opposite directions and showing a strong non-linear dependence on deformation. In addition, the deformation is influenced by a number of other factors such as the absolute size of the cross-section and the aspect ratio of the parts, the dimensions and distribution of the internal cross sections and the overall percentage of the cross-section to be bonded. In micro process engineering, small material cross-sections in the range of the materials microstructure can facilitate additional deformation mechanisms such as grain boundary sliding, which are not relevant at all for larger structures. For parts consisting of multiple layers, tolerances in thickness and roughness of multiple surfaces must be levelled, contributing to the percentaged deformation. This makes it difficult, especially in micro process engineering and in single or small series production, to determine suitable joining parameters in advance, which on the one hand do not cause unforeseen large deformations, but on the other hand reliably produce highly vacuum-tight components. Hence, a definition of a fixed percentaged deformation does not work for all kinds of components. This makes it difficult to specify parameters for surely obtain high-vacuum tight parts. For successful diffusion bonding, atoms must diffuse over the bonding planes, forming a monolithic part in which the original layers are no longer visible. Only then, mechanical properties identical to those of the base material, which has been subjected to identical heat treatment, can be achieved. In this paper, the impacts of different material cross section widths as well as of the aspect ratio on deformation were investigated. By accident, it was found that also accuracy of the temperature measurement may have a serious impact in terms of deformation.


Coatings ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 401 ◽  
Author(s):  
Cherng-Yuh Su ◽  
Jia-Liang Huang ◽  
Po-Chun Chen ◽  
Hsin-Jung Yu ◽  
Dai-Liang Ma ◽  
...  

Ceramic-to-metal heterojunctions have been established to improve high-temperature stability for applications in aerospace and harsh environments. In this work, we employed low-temperature diffusion bonding to realize an alumina/Cu heterogeneous joint. Using a thin layer of lanthanum-doped titanium (La-doped Ti) to metallize the alumina surface, we achieved the bonding at a temperature range of 250–350 °C. We produced a uniform, thermally stable, and high-strength alumina/Cu joint after a hot-press process in vacuum. Signals from X-ray diffraction (XRD) suggested the successful diffusion of Ti and La into the alumina substrate, as Ti can easily substitute Al in alumina, and La has a better oxygen affinity than that of Al. The transmission electron microscopy and XRD results also showed the existence of CuxTiyO phases without CuxTiy or LaOx. In addition, the bonding strength of alumina/copper hot-pressed at 250, 300, and 350 °C were 7.5, 9.8 and 15.0 MPa, respectively. The process developed in this study successfully lowered the bonding temperature for the alumina/copper joint.


2007 ◽  
Vol 551-552 ◽  
pp. 163-168
Author(s):  
Wen Bo Han ◽  
D.Z. Wu ◽  
Guo Feng Wang ◽  
M.J. Tong

The superplastic forming and diffusion bonding (SPF/DB) is applied in aviation and space flight field. The SPF/DB process with gas pressure control for dissimilar superalloy structure was studied. Diffusion bonding parameters, including bonding temperature T, pressure P, time t, affect the joining mechanism. When the bonded specimen with 50&m thick nickel foil interlayer was tensile at room temperature, shear fracture of the joints with nickel foil interlayer takes place at the GH4141 superalloy part. The SPF/DB of four-layer sheets structure was investigated. The optimum parameters for the SPF/DB process are: forming temperature T=1243K, forming pressure P=1MPa, forming time t=35min. The microstructure of the bonded samples was characterized. The microstructure shows an excellent bonding at the interfaces. The distribution of thickness after SPF/DB was investigated.


Sign in / Sign up

Export Citation Format

Share Document