Influence of Processing Parameters on the Texture Formation in Powder Metallurgic Ni-5at.%W Substrate Tapes

2007 ◽  
Vol 546-549 ◽  
pp. 1997-2002 ◽  
Author(s):  
Shao Kai Chen ◽  
C.F. Liu ◽  
Ping Xiang Zhang ◽  
Lian Zhou

Influence of cold rolling total thickness reduction, annealing temperature and annealing time on the textures in powder metallurgic Ni-5at.%W substrate tapes have been quantitatively investigated with the EBSD (Electron Back-Scattered Diffraction) technique. A “copper” type-like texture consisting of {1 2 3}<6 3 –4>+{0 1 –1}<3 –1 –1>+{1 –1 2}<1 –1 –1> has been found in the as-rolled tapes. This texture was much intensive in the tape at 99% thickness reduction than in the tape at 87% thickness reduction. The 99% reduction tape showed a higher fraction and sharper cube texture than the 87% reduction tape after annealing treatment. In addition, annealing at 1000°C was much favourable for the cube texture formation than annealing at 950°C and resulted in a higher cube texture fraction.

2005 ◽  
Vol 105 ◽  
pp. 245-250
Author(s):  
Zheng Rong Zhang ◽  
Kazuyoshi Sekine

In order to obtain a sharply cube textured silver sheet as the substrate for high temperature superconductor (HTS) film with high Jc (critical current density), warm rolling combined with two step annealing treatment has been performed to clarify the perspective of texture formation in pure silver. Two kinds of starting material, which are silver ingots of commercial purity obtained by casting in air and vacuum, were used to examine the effect of oxygen on texture development. The main feature of warm rolling texture obtained in this study was a strong Brass {011}<211> component with minor S {123}<412> component, and in some cases, cube {001}<100> component or Copper {112}<111> component appeared also depending on the warm rolling procedures. Upon crystallization, {001}<100>, {124}<4,12,7> and {13,6,15}<365> orientations were formed as the dominant components in silver sheets and the relative amount of their orientation components depended on the concrete annealing conditions applied and on the oxygen content. A very sharp single-crystal like cube texture has been successfully realized in the specimen, which was cast in vacuum, warm rolled by 95 percent and subsequently annealed as 1500C×10 min-5000C×30 min in nitrogen. Finally, we discussed the technological basis on sharp cube texture formation in f.c.c. pure metals with low stacking fault energy.


2006 ◽  
Vol 118 ◽  
pp. 31-34 ◽  
Author(s):  
Won Jong Nam ◽  
Hyung Rak Song ◽  
Kyung Tae Park

The effects of annealing temperature and annealing time on mechanical properties of cold drawn pearlitic steel wires containing 0.84wt% of silicon were investigated. Annealing treatment was performed on cold drawn steel wires for the temperature range of 200°C to 450°C with the different annealing time of 30sec, 1min, 15min and 1hr. The increase of tensile strength at the low annealing temperatures would be related with strain ageing behavior, while the decrease of tensile strength at the high annealing temperature is due to the spheroidization of cementite plates and the occurrence of recovery of the lamellar ferrite in the pearlite.


10.30544/231 ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 221-236
Author(s):  
Padina Ajami Ghaleh Rashidi ◽  
Hossein Arabi ◽  
Seyed Mehdi Abbasi

In this research, the effect of cold rolling, annealing time and temperature on microstructure and hardness were studied in L-605 superalloy. A cast bar of L-605 alloy was hot rolled at 1200ºC. As the following, it was solutionized at 1230 ºC for 1 hour and finally was cold rolled by different amounts (i.e. 5-35 percent thickness reduction). The cold-rolled samples were heat treated for different times (i.e. 2-120 min.) at temperature range of 1068-1230 ºC in order to study their recrystallization behavior. The results of microstructural analysis indicated that static recrystallization is responsible for microstructural refinement and coarsening, so that an increase in the amounts of cold rolling resulted in a fully recrystallized microstructure at lower temperature. This analysis also indicated that annealing temperature is more effective than annealing time in grain growth. Microstructural evaluation as well as showed that carbides such as M7C3 and M23C6 which have been reported in some literature were not observed during rolling or annealing in this research. It is perhaps due to usage of high annealing temperatures or possibly due to their very low contents which was not possible for us to evaluate their formation with conventional methods. Hardness results revealed that higher annealing temperature lead to lower hardness values as expected.


2012 ◽  
Vol 567 ◽  
pp. 116-122 ◽  
Author(s):  
Qing Mei Wu ◽  
De Qing Wang ◽  
Yang Gao

The method adopted to manufacture copper clad steel wire in this study is cladding and welding and then drawing and annealing it. The effect of drawing deformation and annealing treatment on the grain size of α-Fe phase were studied. Experimental results show that the grain sizeα in cross section of α-Fe phase is decreased with the increase of the drawing deformation. Grains of the longitudinal section are elongated toward the drawing direction and appeared a strip shape. The grain size in cross-section of α-Fe phase is enhanced with the increase of the annealing time and annealing temperature, its length diameter ratio in longitudinal section is decreased oppositely. The grain size in cross section and length diameter ratio in longitudinal section are almost invariant in 850 °C for 2 h, the grain in longitudinal section tends to be equiaxial, the recrystallization processes is thus finished at this moment. Through the experimental data analysis, the regression equation about the relation of annealing temperature and annealing time of CCS with the grain size in cross section and length diameter ratio in longitudinal section are obtained.


2015 ◽  
Vol 1105 ◽  
pp. 195-199
Author(s):  
Yi Chen Meng ◽  
Hong Li Suo ◽  
Hui Tian ◽  
Lin Ma ◽  
Yi Wang ◽  
...  

The high critical current density of YBCO-coated conductors prepared by rolling assisted biaxially textured substrate technic is mostly based on the high quality cube-textured substrates. In this paper, the effect of initial grain size of ingot on the microstructure and texture evolutions during cold rolling has been investigated in high alloyed Ni8W ingots, which can affect the cube texture formation in Ni8W alloy substrates subsequently. Finally, high quality cube texture had been obtained in Ni8W alloy substrate with fine initial grain size prepared by advanced SPS technology.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 957
Author(s):  
Héctor Ortiz Rangel ◽  
Armando Salinas Rodríguez ◽  
Omar García Rincón

The microstructure of a low Si, ultra-low-C, hot-rolled electrical steel strip is modified by annealing at T < To, the α→γ transformation temperature. This heat treatment causes the abnormal anisotropic growth of surface grains which consumes the original hot-rolled microstructure. The growth of the surface grains first takes place parallel to the rolling direction and then in a columnar form parallel to the normal direction until grains growing in opposite directions from the surfaces impinge at the center of the strip. It is shown that cold rolling and a short annealing treatment at temperatures between 700 and 800 °C leads to microstructures which result in iron energy losses that can be as much as 30% lower than those observed in the same material not subjected to the annealing prior to cold rolling. The magnitude of the reduction in energy losses depends on strip thickness and processing parameters. The major effect is observed in material annealed at 710 °C and the relative effect (with respect to material that is not annealed prior to cold rolling) decreases as the strip thickness decreases. It is shown that these effects can be attributed to the effect of the processing conditions on texture and grain size. The maximum reduction in energy losses is observed when the final microstructure consists of ferrite grains ~1.5 times larger than those obtained if the material is not annealed prior to cold rolling.


2011 ◽  
Vol 702-703 ◽  
pp. 34-40 ◽  
Author(s):  
Ranjit Kumar Ray ◽  
P. Ghosh

Interstitial free high strength steels (IFHS) are widely used in the automobile sector due to their high strength and excellent formability. However, these properties of IFHS steels are very much dependent on the processing parameters, like hot rolling, cold rolling and annealing. The composition and processing parameters influence the chemistry and morphology of the precipitates formed in these steels, which in turn control the texture and thus the deep-drawability. This review will briefly summarize the findings of the ongoing research in this area. An attempt will also be made to elucidate the correlation of precipitation behavior and texture formation (and thus formability) in these steels.


2020 ◽  
Vol 121 (3) ◽  
pp. 261-268
Author(s):  
J. Cui ◽  
H. L. Suo ◽  
J. H. Wang ◽  
J.-C. Grivel ◽  
S. Kausar ◽  
...  

2014 ◽  
Vol 887-888 ◽  
pp. 1323-1327
Author(s):  
Yi Chen Meng ◽  
Hong Li Suo ◽  
Hui Tian ◽  
Lin Ma ◽  
Yi Wang ◽  
...  

Ni8W alloy ingots were prepared by SPS technic, followed by homogenizing, cold rolling and recrystallization annealing. The influence of ball milling on cold rolling and cube texture formation of Ni8W alloy substrates was investigated during the course of preparation. Finally, high quality cube-textured Ni8W alloy substrates were successfully obtained using this powder metallurgy process, and characterized by electron backscatter diffraction technic. It indicated that the cube texture fraction was as high as 90% (<10o) when it annealed at 1350°C for 2 h.


2013 ◽  
Vol 573 ◽  
pp. 95-103
Author(s):  
Zhi Hao Yao ◽  
Jian Xin Dong ◽  
Zhi Yong He ◽  
Mai Cang Zhang

The microstructure evolution and control for Alloy 690 during cold rolling and annealing treatment was investigated. Cold rolling specimens were deformed in the strain range from 15% to 70% with strain rates from 0.01 to 10s-1. Subsequent annealing treatment was carried out in the range of 1060~1100°C for dwell time 3~15mins. Rolling reduction, annealing temperature and annealing time except strain rate had obviously influence on grain size and hardness. Little coarsening of grains were observed below 1060°C during annealing treatment, whereas grains coarsened obviously over 1080°C. Besides, the behavior of grain growth for alloy 690 was investigated systematically.


Sign in / Sign up

Export Citation Format

Share Document