Effect of Plasma Spraying Parameters on Anisotropic Feature of the Mechanical Property of Plasma Sprayed Al2O3 Coating

2008 ◽  
Vol 580-582 ◽  
pp. 471-474 ◽  
Author(s):  
Shinichiro Adachi ◽  
Kazuhiro Nakata

The effects of the plasma spraying parameters on the strength of an Al2O3 coating were investigated by changing the input electrical power to the plasma torch, the spray distance and the Al2O3 powder size as the spraying parameters. The anisotropic feature of the coating strength is also discussed. The strength of the Al2O3 coating in a direction perpendicular to a substrate plane was dominated by the layered structure of Al2O3 splats, and was affected by all the parameters. The strength of the coating in a direction parallel to the substrate plane was not affected by the input electrical power. The strength of the former was lower than that of the latter, in the coating containing many cracks. The anisotropy of the coating strength would be caused by the cracks propagating along the lines of the laminated layer.

2007 ◽  
Vol 353-358 ◽  
pp. 495-498 ◽  
Author(s):  
Hiroyuki Waki ◽  
Akira Kobayashi

Plasma sprayed CoNiCrAlY coating can prevent oxidation and corrosion of turbine blades in a gas turbine plant. Cracking and delamination of coatings are affected by the residual stresses in the coatings. In this study, the arising mechanism of residual stress in the plasma sprayed coating was discussed. The residual stresses in CoNiCrAlY coatings were measured by X-ray diffraction method. The coatings were deposited by either low pressure plasma spraying (LPPS) or atmospheric plasma spraying (APS). Each elastic constant which was used for determining the X-ray stress constant was mechanically measured by a bending test. Two kinds of substrates were prepared for each coating in order to examine the effect of thermal expansion coefficient of a substrate. Results were as follows. The residual stresses of the coatings on steel substrates were tensile. On the other hand, the residual stresses on stainless substrates were lower than those on steel substrates. Arising mechanism of the residual stresses can be explained by both the linear expansion coefficient and the range of changing temperature. It was also found that the absolute residual stresses were affected by the spraying powder size and increased with a decrease of the spraying powder size. It was principally caused by the difference in the elastic constants.


Author(s):  
K.R. Subramanian ◽  
A.H. King ◽  
H. Herman

Plasma spraying is a technique which is used to apply coatings to metallic substrates for a variety of purposes, including hardfacing, corrosion resistance and thermal barrier applications. Almost all of the applications of this somewhat esoteric fabrication technique involve materials in hostile environments and the integrity of the coatings is of paramount importance: the effects of process variables on such properties as adhesive strength, cohesive strength and hardness of the substrate/coating system, however, are poorly understood.Briefly, the plasma spraying process involves forming a hot plasma jet with a maximum flame temperature of approximately 20,000K and a gas velocity of about 40m/s. Into this jet the coating material is injected, in powder form, so it is heated and projected at the substrate surface. Relatively thick metallic or ceramic coatings may be speedily built up using this technique.


Author(s):  
M.G. Yagodin ◽  
E.I. Starovoytenko

The equipment for the production of wide range of metal powders purposed for powder metallurgy is described. The possibility for producing of powders by the plasma centrifugal spraying is considered taking into account the gas dynamic pressure. The calculated data on the powder size for different materials are given.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 879
Author(s):  
Monika Michalak ◽  
Paweł Sokołowski ◽  
Mirosław Szala ◽  
Mariusz Walczak ◽  
Leszek Łatka ◽  
...  

Thermally sprayed ceramic coatings are applied for the protection of surfaces that are exposed mainly to wear, high temperatures, and corrosion. In recent years, great interest has been garnered by spray processes with submicrometric and nanometric feedstock materials, due to the refinement of the structure and improved coating properties. This paper compares the microstructure and tribological properties of alumina coatings sprayed using conventional atmospheric plasma spraying (APS), and various methods that use finely grained suspension feedstocks, namely, suspension plasma spraying (SPS) and suspension high-velocity oxy-fuel spraying (S-HVOF). Furthermore, the suspension plasma-sprayed Al2O3 coatings have been deposited with radial (SPS) and axial (A-SPS) feedstock injection. The results showed that all suspension-based coatings demonstrated much better wear resistance than the powder-sprayed ones. S-HVOF and axial suspension plasma spraying (A-SPS) allowed for the deposition of the most dense and homogeneous coatings. Dense-structured coatings with low porosity (4 vol.%) and good cohesion to the metallic substrate, containing a high content of α–Al2O3 phase (56 vol.%) and a very low wear rate (0.2 ± 0.04 mm3 × 10−6/(N∙m)), were produced with the S-HVOF method. The wear mechanism of ceramic coatings included the adhesive wear mode supported by the fatigue-induced material delamination. Moreover, the presence of wear debris and tribofilm was confirmed. Finally, the coefficient of friction for the coatings was in the range between 0.44 and 0.68, with the highest values being recorded for APS sprayed coatings.


Author(s):  
Lida Shen ◽  
Yinhui Huang ◽  
Zongjun Tian ◽  
Guoran Hua

This paper describes an investigation of nano-Al2O3 powders reinforced ceramic coatings, which has included NiCrAl and Al2O3+13%wt.TiO2 coats pre-produced by atmosphere plasma spraying, implemented by laser sintering. Commercial NiCrAl powders were plasma sprayed onto 45 Steel substrates to give a bond coat with thickness of ∼100μm. The 600μm thick Al2O3+13%wt.TiO2 based coating was also plasma sprayed on top of the NiCrAl bond coat. With 2.5kw continuous wave CO2 laser, nano-Al2O3 ceramic powders were laser sintered on the based Coatings. The micro structure and chemical composition of the modified Al2O3+13%wt.TiO2 coatings were analyzed by such detection devices as scanning electronic microscope (SEM) and x-ray diffraction (XRD). Microhardness, wear resistance and corrosion resistance of the modified coatings were also tested and compared with that of the unmodified. The results show that the crystal grain size of Al2O3 had no obvious growth. In addition, due to the nanostructured Al2O3 ceramic phases, the coatings exhibited higher microhardness, better wear resistance and corrosion resistance than those unmodified counterparts. The complex process of plasma spraying with laser sintering as a potential effective way of the application of ceramic nano materials was also simply discussed and summarized in the end.


Author(s):  
T. Valente ◽  
C. Bartuli ◽  
G. Visconti ◽  
M. Tului

Abstract Reusable space vehicles, which must withstand re-entry into the Earth's atmosphere, require external protection systems (TPS) which are usually in the forms of rigid surface in areas of high or moderate working temperature. High heat fluxes and temperatures related to high performance hypervelocity flights also require the use of TPS materials having good oxidation and thermal shock resistance, dimensional stability, and ablation resistance. Components by these materials are usually fabricated, starting from either billets or plate stocks, by uniaxial hot pressing, and complex parts, such as low radius edges, are then obtained by electrical discharge machining technique. This article investigates an alternative fabrication technology, based on plasma spraying, to produce near net shape components. Results of experimental activities, such as optimization of plasma spraying parameters based on a DOE approach, are reported and discussed.


Author(s):  
E. Lugscheider ◽  
P. Remer ◽  
L. Zhao

Abstract In this investigation reactive plasma spraying was used to produce wear resistant coatings of Ti-carbides/titanium or Ti-nitrides/titanium composites. Ti-powders with different powder size distributions were used as raw materials. Methane and nitrogen were used as reactive gases to form carbides and nitrides. A reactor was adapted to the plasma gun F4 of a Sulzer Metco vacuum plasma spraying equipment to increase the degree of the expected reactions. Phase analysis and micrography of the coatings reveal that the Ti-hardphases were synthesized during spraying and embedded in the titanium matrix. The in situ synthesized hardphases show different forms and sizes. Most of them are non-stoichiometry. Compared to the titanium coating the coatings produced by reactive plasma spraying are much harder and more resistant against both sliding and abrasive wear.


Author(s):  
F. Vos ◽  
L. Delaey ◽  
M. De Bonte ◽  
L. Froyen

Abstract Results are presented of a project analysing the relationship between the production parameters of plasma sprayed self-lubricating Cr2O3-CaF2 coatings and their structural, wear and lubricating properties. The production method consists of a preparation step where a powder blend of the matrix material (Cr203) and solid lubricant (CaF2) is agglomerated, followed by atmospheric plasma spraying (APS) of the agglomerates. Selection of the most appropriate agglomeration and plasma spray parameters as well as the microstructure of the coatings will be discussed.


Sign in / Sign up

Export Citation Format

Share Document