Ultrafast X-Ray Imaging and Modelling of Ultrasonic Cavitations in Liquid Metal

2013 ◽  
Vol 765 ◽  
pp. 190-194 ◽  
Author(s):  
Tung Lik Lee ◽  
Jia Chuan Khong ◽  
Kamel Fezzaa ◽  
Jia Wei Mi

The dynamics of ultrasonic bubbles in liquid metal are captured in-situ for the first time using the ultrafast X-ray phase contrast imaging facility housed at the Advanced Photon Source, Argonne National Laboratory, in the USA. The experimental observations are complemented by the simulations of the acoustic pressure field, the bubble diameter oscillation and the associated pressure and velocity pulses at the bubble wall due to the alternating pressure wave. The experiment and simulation agree well and provide more quantitative insight into the understanding of the highly transient behaviour of the ultrasonic bubbles and their interaction with the surrounding liquid metal.

Author(s):  
O. Coutier-Delgosha ◽  
A. Vabre ◽  
M. Hocevar ◽  
R. Delion ◽  
A. Dazin ◽  
...  

The present paper presents an experimental method to measure velocity fields in a cavitating flow. Dynamics of the liquid phase and of the bubbles are both investigated. The measurements are based on ultra fast X-ray imaging performed at the APS (Advanced Photon Source) of the Argonne National Laboratory. This is collaboration between research teams devoted to fluid mechanics (LML laboratory, Laboratory for water and turbine machines) and experts in X-ray imaging (French atomic commission, Argonne National Laboratory). The experimental device consists of a millimetric Venturi test section associated with a transportable hydraulic loop. Various configurations of velocity, pressure, and temperature have been investigated. This first paper focuses on the experimental equipment and process, and also the description of the image processing which is performed to analyze the results and obtain the velocity fields of both phases within the cavitating areas. Promising preliminary results are also presented.


Author(s):  
Raphael Distler ◽  
Christoph Hamann ◽  
Martin Krämer ◽  
Eberhard Kull ◽  
Michael Wensing ◽  
...  

Investigation of the primary breakup region of gasoline sprays is important for future nozzle development. It improvesthe principal understanding of inner nozzle flow and spray breakup. It also allows validating and developingCFD models. Due to the high optical density common measurement techniques like Phase Doppler Anemometryreach their limit in optical dense sprays as in the primary breakup region. High Speed X-Ray Imaging is capable tomeasure 2D velocity distributions directly at the spray hole exit. For generating the intense X-Ray beam the synchrotronAdvanced Photon Source at Argonne National Laboratory is used. Passing through the spray the X-Raybeam is changed by two different physical principles: absorption and phase contrast. Absorption can be applied tomeasure the density of the spray. Phase contrast is used to visualize the borders of droplets and ligaments withhigh contrast. The accelerated electron bunches inside the synchrotron have a constant period length to each other.This leads to an accurate pulsed X-Ray beam (periodicity: 68 ns). The use of multi exposure with very short X-Raypulses (17 ns) shows the traveled distance of the spray droplets and ligaments. The spray speed (150-250 m/s) iscalculated by dividing these distances with the time gap between two X-Ray pulses. The X-Ray measured densitydistributions and velocity distributions are combined to calculate the spray force rate. The so gained force rate isvalidated with a spray force measurement performed at the Spray Momentum Test Bench (SMTB) at ContinentalAutomotive GmbH. The study is focusing on the measurement setup of High Speed X-Ray Imaging at ArgonneNational Laboratory and the evaluation algorithms.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4598


2021 ◽  
Vol 11 (7) ◽  
pp. 2971
Author(s):  
Siwei Tao ◽  
Congxiao He ◽  
Xiang Hao ◽  
Cuifang Kuang ◽  
Xu Liu

Numerous advances have been made in X-ray technology in recent years. X-ray imaging plays an important role in the nondestructive exploration of the internal structures of objects. However, the contrast of X-ray absorption images remains low, especially for materials with low atomic numbers, such as biological samples. X-ray phase-contrast images have an intrinsically higher contrast than absorption images. In this review, the principles, milestones, and recent progress of X-ray phase-contrast imaging methods are demonstrated. In addition, prospective applications are presented.


2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


2012 ◽  
Vol 27 (4) ◽  
pp. 256-262 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
H. Wu ◽  
M. Suchomel

M2(dhtp)·nH2O (M = Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate), known as MOF74, is a family of excellent sorbent materials for CO2 that contains coordinatively unsaturated metal sites and a honeycomb-like structure featuring a broad one-dimensional channel. This paper describes the structural feature and provides reference X-ray powder diffraction patterns of these four isostructural compounds. The structures were determined using synchrotron diffraction data obtained at beam line 11-BM at the Advanced Photon Source (APS) in the Argonne National Laboratory. The samples were confirmed to be hexagonal R 3 (No. 148). From M = Mn, Co, Ni, to Zn, the lattice parameter a of MOF74 ranges from 26.131 73(4) Å to 26.5738(2) Å, c from 6.651 97(5) to 6.808 83(8) Å, and V ranges from 3948.08 Å3 to 4163.99 Å3, respectively. The four reference X-ray powder diffraction patterns have been submitted for inclusion in the Powder Diffraction File (PDF).


Author(s):  
R. W. McClung ◽  
D. R. Johnson

Following an assessment of needs for NDT and characterization of ceramics for the DOE program, Ceramic Technology for Advanced Heat Engines (CTAHE), many NDT projects have been implemented under the sponsorship of CTAHE to address the needs. Tasks at Argonne National Laboratory have involved X-ray computed tomography and nuclear magnetic resonance imaging. The Oak Ridge National Laboratory has emphasized high-frequency ultrasonics, low-voltage radiography, and an advanced system for X-ray computed tomography. A brief investigation was made by Radiation Sciences, Inc., into the feasibility of synchrotron-computed tomography for ceramics. New programs recently initiated at Allison and Garrett integrate ultrasonics, radiography, and other methods into a major effort on life prediction. New programs at Norton and GTE on advanced processing of ceramics also place heavy emphasis on several methods of NDT for process development and control. Initial work on NDT standards has begun in ASTM Committees E-7 and C-28.


Author(s):  
Katarzyna E Matusik ◽  
Daniel J Duke ◽  
Nicholas Sovis ◽  
Andrew B Swantek ◽  
Christopher F Powell ◽  
...  

Gasoline direct injection (GDI) nozzles are manufactured to meet geometric specifications with length scales onthe order of a few hundred microns. The machining tolerances of these nominal dimensions are not always knowndue to the difficulty in accurately measuring such small length scales in a nonintrusive fashion. To gain insight intothe variability of the machined dimensions as well as any effects that this variability may have on the fuel spraybehavior, a series of measurements of the internal geometry and fuel mass distribution were performed on a set ofeight nominally duplicate GDI “Spray G” nozzles provided by the Engine Combustion Network. The key dimensionsof each of the eight nozzle holes were measured with micron resolution using full spectrum x-ray tomographicimaging at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. Fuel densitydistributions at 2 mm downstream of the nozzle tips were obtained by performing x-ray radiography measurementsfor many lines of sight. The density measurements reveal nozzle-to-nozzle as well as hole-to-hole density variations.The combination of high-resolution geometry and fuel distribution datasets allows spray phenomena to be linked tospecific geometric characteristics of the nozzle, such as variability in the hole lengths and counterbore diameters,and the hole inlet corner radii. This analysis provides important insight into which geometrical characteristics ofthe nozzles may have the greatest importance in the development of the injected sprays, and to what degreethese geometric variations might account for the total spray variability. The goal of this work is then to further theunderstanding of the relationship between internal nozzle geometry and fuel injection, provide input to improvecomputational models, and ultimately aid in optimizing injector design for higher fuel efficiency and lower emissionsengines.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4766


2005 ◽  
Vol 61 (2) ◽  
pp. 129-132 ◽  
Author(s):  
E. N. Caspi ◽  
B. Pokroy ◽  
P. L. Lee ◽  
J. P. Quintana ◽  
E. Zolotoyabko

High-resolution synchrotron powder diffraction measurements were carried out at the 32-ID beamline of the Advanced Photon Source of Argonne National Laboratory in order to clarify the structure of geological aragonite, a widely abundant polymorph of CaCO3. The investigated crystals were practically free of impurity atoms, as measured by wavelength-dispersive X-ray spectroscopy in scanning electron microscopy. A superior quality of diffraction data was achieved by using the 11-channel 111 Si multi-analyzer of the diffracted beam. Applying the Rietveld refinement procedure to the high-resolution diffraction spectra, we were able to extract the aragonite lattice parameters with an accuracy of about 20 p.p.m. The data obtained unambiguously confirm that pure aragonite crystals have orthorhombic symmetry.


1997 ◽  
Vol 3 (S2) ◽  
pp. 905-906
Author(s):  
Mark L. Rivers ◽  
Stephen R. Sutton ◽  
Peter Eng ◽  
Matthew Newville

The Advanced Photon Source (APS) at Argonne National Laboratory is a third-generation synchrotron x-ray source, optimized for producing x-rays from undulators. Such undulator sources provide extremely bright, quasi-monochromatic radiation which is ideal for an x-ray microprobe. Such microprobes can be used for trace element quantification with x-ray fluorescence, or for chemical state determination with x-ray absorption spectroscopy. The GeoSoilEnviroCARS (GSECARS) sector at the APS is building an x-ray microprobe for research in earth, planetary, soil and environmental sciences.The GSECARS undulator source is a standard APS Undulator “A” which is a 3.3 cm period device with 72 periods. The energies of the undulator peaks can be varied by adjusting the gap, and hence the magnetic field of the undulator. The energy of the first harmonic can be varied in this way from approximately 3.1 keV to 14 keV. A measured undulator spectrum is shown in Figure 1.


Author(s):  
John A. Michelbacher ◽  
Carl E. Baily ◽  
Daniel K. Baird ◽  
S. Paul Henslee ◽  
Collin J. Knight ◽  
...  

The Department of Energy mandated the termination of the Integral Fast Reactor (IFR) Program, effective October 1, 1994. To comply with this decision, Argonne National Laboratory-West (ANL-W) prepared a plan providing detailed requirements to maintain the Experimental Breeder Reactor-II (EBR-II) in a radiologically and industrially safe condition, including removal of all irradiated fuel assemblies from the reactor plant, and removal and stabilization of the primary and secondary sodium, a liquid metal used to transfer heat within the reactor plant. The EBR-II is a pool-type reactor. The primary system contained approximately 325 m3 (86,000 gallons) of sodium and the secondary system contained 50 m3 (13,000 gallons). In order to properly dispose of the sodium in compliance with the Resource Conservation and Recovery Act (RCRA), a facility was built to react the sodium to a solid sodium hydroxide monolith for burial as a low level waste in a land disposal facility. Deactivation of a liquid metal fast breeder reactor (LMFBR) presents unique concerns. Residual amounts of sodium remaining in circuits and components must be passivated, inerted, or removed to preclude future concerns with sodium-air reactions that could generate potentially explosive mixtures of hydrogen and leave corrosive compounds. The passivation process being implemented utilizes a moist carbon dioxide gas that generates a passive layer of sodium carbonate/sodium bicarbonate over any quantities of residual sodium. Tests being conducted will determine the maximum depths of sodium that can be reacted using this method, defining the amount that must be dealt with later to achieve RCRA clean closure. Deactivation of the EBR-II complex is on schedule for a March, 2002, completion. Each system associated with EBR-II has an associated layup plan defining the system end state, as well as instructions for achieving the layup condition. A goal of system-by-system layup is to minimize surveillance and maintenance requirements during the interim period between deactivation and decommissioning. The plans also establish document archival of not only all the closure documents, but also the key plant documents (P&IDs, design bases, characterization data, etc.) in a convenient location to assure the appropriate knowledge base is available for decommissioning, which could occur decades in the future.


Sign in / Sign up

Export Citation Format

Share Document