Structural and Multiferroic Properties of Co0.6Zn0.4Fe2O4 – Pb0.76Ca0.24TiO3 Composite Thin Films

2015 ◽  
Vol 830-831 ◽  
pp. 592-594 ◽  
Author(s):  
Shilpa Thakur ◽  
Hakikat Sharma ◽  
Sarita Sharma ◽  
N.S. Negi

Co0.6Zn0.4Fe2O4(CZFO), Pb0.76Ca0.24TiO3(PCT) thin films and Co0.6Zn0.4Fe2O4– Pb0.76Ca0.24TiO3(CZFO/PCT) composite thin film were prepared by chemical solution method using metello – organic precursor. Structural and microstructural properties were studied by using XRD and Atomic force microscopy (AFM) respectively. XRD patterns confirme cubic spinel structure for CZFO ferrite and perovskite structure for PCT ferroelectric phase without any impurity phase formation. Grain size and roughness were calculated from AFM images. Grain size and roughness of composite thin film are decreased in comparison to individual phases (CZFO,PCT). Magnetic properties were studied using VSM.

2015 ◽  
Vol 830-831 ◽  
pp. 589-591 ◽  
Author(s):  
Hakikat Sharma ◽  
N.S. Negi

In the present study we prepared NiFe2O4, Ni0.95Cu0.05Fe2O4and Ni0.94Cu0.05Co0.01Fe2O4thin films by metallo-organic decomposition method (MOD) using spin coating technique. The samples were characterized by XRD. XRD patterns of thin films confirmed the formation of cubic spinel structure without any secondary phase. For microstructural analysis we characterized samples by Scanning Probe Microscope (SPM). From Atomic force microscopy (AFM), we analyzed surface morphology, calculated grain size, roughness and porosity. It has been found that grain size and roughness affected by Cu, Co substitution. After this we carried out magnetic force microscopy (MFM) on the samples. Effect of substitution on magnetic grains was observed from MFM.


2012 ◽  
Vol 455-456 ◽  
pp. 711-715
Author(s):  
Jian Min Li ◽  
Long Long Zhang ◽  
Ling Yu Li ◽  
Hai Yan Xu

A rapid preparation route, microwave-assisted chemical solution method, has been developed for the fabrication of zinc sulfide (ZnS) thin film and powder with shape of microsphere. The as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical measurement. XRD results indicated that the structures of as-obtained products are wurtzite. The SEM and AFM photographs show that uniform ZnS microsphere with size of less than 1 μm and homogeneous thin film could be obtained from solution under adequate conditions with thiourea as sulfide source. The results show that microwave-assisted chemical solution method is really a time saving method to fabricate the ZnS thin film and nanostructured microspheres.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


2010 ◽  
Vol 24 (30) ◽  
pp. 5867-5875
Author(s):  
JICHENG ZHOU ◽  
ZHENG LIU ◽  
XUQIANG ZHENG ◽  
YOUZHEN LI ◽  
DITIAN LUO

Ta–Si–N thin films and Cu/Ta–Si–N thin films were deposited on p-type Si (111) substrates by magnetron reactive sputtering. Then the films were characterized by four-point probe sheet resistance measurement, atomic force microscopy, X-ray diffraction method and scanning electron microscope, respectively. The experimental results show that the sheet resistance of Ta–Si–N thin film increases with N content. And the surface roughness of the thin film first decreases and then increases with N content. By increasing the N content, the diffusion barrier property of Ta–Si–N thin film can be improved; however, this improvement is not evident when N content beyond 56%. The as-deposited Ta–Si thin film is nano-crystalline. When doped with N, the as-deposited thin film becomes amorphous. The crystallization of Ta–Si–N thin film occurs again at high temperature. Cu atoms diffuse through grain boundaries of Ta–Si–N thin film into Si , and this leads to failure of the diffusion barrier.


2014 ◽  
Vol 895 ◽  
pp. 407-410
Author(s):  
Yeo Lee Kong ◽  
S.V. Muniandy ◽  
M.S. Fakir ◽  
K. Sulaiman

Surface morphology of thin films can be efficiently characterized using power spectral density method. Spectral based parameters from surface models can then be linked to electrical conductivity of thin films used for fabricating organic photovoltaic devices. In this study, the surface morphologies of the organic thin films phthalocyanine tetrasulfonic acid tetrasodium (TsNiPc) are investigated using atomic force microscopy. The thin film samples are imaged at 40-minutes and 120-minutes after the solvent treatment. The spectral exponent β is determined from the slope of PSD log-log plot and the fractal dimension D of each film is calculated based on fractal relation β = 8 2D. The relationship between surface roughness and fractal dimension with respect to electrical properties of thin film is discussed.


2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.


2007 ◽  
Vol 14 (04) ◽  
pp. 755-759 ◽  
Author(s):  
D. U. LEE ◽  
J. H. JUNG ◽  
T. W. KIM ◽  
H. S. LEE ◽  
H. L. PARK ◽  
...  

CdTe thin films were grown on GaAs (100) substrates by using molecular beam epitaxy at various temperatures. The results of the X-ray diffraction (XRD) patterns showed that the orientation of the grown CdTe thin films was the (100) orientation. XRD patterns, atomic force microscopy images, high-resolution transmission electron microscopy (HRTEM) images, and photoluminescence spectra showed that the crystallinity of CdTe (100) epilayers grown on GaAs (100) substrates was improved by increasing the substrate temperature. HRTEM images showed that misfit dislocations existed at the CdTe / GaAs heterointerface. These results can help improve understanding of the substrate temperature effect on the structural and the optical properties of CdTe (100)/ GaAs (100) heterostructures.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 869 ◽  
Author(s):  
Nicolas Raab ◽  
Dirk Schmidt ◽  
Hongchu Du ◽  
Maximilian Kruth ◽  
Ulrich Simon ◽  
...  

We investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO 3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO 3 single crystal substrates as a defect formation template for the subsequent growth of SrTiO 3 . We studied in detail the resulting microstructure and the local conducting and switching properties of the SrTiO 3 thin films. We revealed that the Au nanoparticles floated to the SrTiO 3 surface during growth, leaving behind a distorted thin film region in their vicinity. By employing conductive-tip atomic force microscopy, these distorted SrTiO 3 regions are identified as sites of preferential resistive switching. These findings can be attributed to the enhanced oxygen exchange reaction at the surface in these defective regions.


2013 ◽  
Vol 594-595 ◽  
pp. 1131-1135 ◽  
Author(s):  
Fariza Mohamad ◽  
Connie Anak Abang ◽  
Nik Hisyamudin Muhd Nor ◽  
Masanobu Izaki

Zinc Oxide (ZnO) has been successfully electrodeposited on a fluorine doped tin oxide (FTO) coated glass substrates using a simple aqueous solution containing zinc nitrate hydrate by low temperature galvanostatic electrolysis. The solution temperature of zinc nitrate hydrate was varied from 60°C to 75°C in order to investigate the effect of solution temperature on electrodeposit-ZnO thin film. The properties of ZnO film were investigated by X-ray diffraction (XRD), Field-Emission Scanning electron microscope (FE-SEM) and Atomic force microscopy (AFM). The solution temperature shows a significant effect on structural and morphological of deposit-ZnO. The XRD patterns exhibited the increment of (002)-ZnO peak when the solution temperature increased and the highest peak was observed at 75°C. The morphology of ZnO was changed from planar to nanopillar with the solution temperature. In conclusion, ZnO nanopillar with an excellent structural properties was obtained at solution temperature of 75°C.


Sign in / Sign up

Export Citation Format

Share Document