scholarly journals Synthesis and Electrical Studies of Quaternary Chalcogenide Semiconductor Cu2ZnSnSe4

2016 ◽  
Vol 846 ◽  
pp. 383-387
Author(s):  
Leong Yong Jian ◽  
Josephine Liew Ying Chyi ◽  
Zainal Abidin Talib ◽  
W. Wahmood Wan Yunus ◽  
Fakhrurrazi Ashari ◽  
...  

Quaternary chalcogenide semiconductor has attracted much attention as absorber-layer materials in solar cells. The absorber-layer material, Cu2ZnSnSe4 (CZTSe) which is a p-type semiconductor that has high absorption coefficient, had been synthesized by using solvothermal method. The variation of concentrations of the Copper (II) Chloride dihydrate have brought some effects towards producing the stoichiometry and non-stoichiometry copper zinc tin selenide that may lead to the improvement of efficiency of solar cells. The synthesized reaction was conducted at 250°C for 24 hours. Properties of the samples have been characterized by X-ray diffraction (XRD) to determine the crystal structure of the sample and X-ray Fluorescence (XRF) to determine the elemental composition of the sample. The electrical properties such as resistance and conductivity have been studied through Van der Pauw configuration. The CZTSe has been successfully synthesized at concentrations of 0.15 M with no impurities phases existed.

Author(s):  
Tuyen Nguyen Viet

Cu2ZnSnS4 (CZTS) is a p-type semiconductor with high absorption coefficient and direct bandgap from 1 to 1.5 eV, which is ideal for making absorber layer for solar cell. However, it is difficult to get single phase of CZTS due to the competitive formation of binary and ternary secondary phases. In this paper, we prepared CZTS nanoparticles by hydrothermal method and investigate the influence of hydrothermal temperature on the product. Raman scattering, X-ray diffraction, scanning electron microcopy, energy dispersive X-ray spectroscopy and diffusion reflective measurement were applied to characterize the products. The products are high quality nanocrystals of kesterite phase with uniform size which is applicable for solar absorber layer fabrication.


2011 ◽  
Vol 121-126 ◽  
pp. 1526-1529
Author(s):  
Ke Gao Liu ◽  
Jing Li

Bulk Fe4Sb12 and Fe3CoSb12 were prepared by sintering at 600 °C. The phases of samples were analyzed by X-ray diffraction and their thermoelectric properties were tested by electric constant instrument and laser thermal constant instrument. Experimental results show that, the major phases of bulk samples are skutterudite with impurity phase FeSb2. The electric resistivities of the samples increase with temperature rising at 100~500 °C. The bulk samples are P-type semiconductor materials. The Seebeck coefficients of the bulk Fe4Sb12 are higher than those of bulk Fe3CoSb12 samples at 100~200 °C but lower at 300~500 °C. The power factor of the bulk Fe4Sb12 samples decreases with temperature rising while that of bulk Fe3CoSb12 samples increases with temperature rising at 100~500 °C. The thermal conductivities of the bulk Fe4Sb12 samples are relatively higher than those of and Fe3CoSb12, which maximum value is up to 0.0974 Wm-1K-1. The ZT value of bulk Fe3CoSb12 increases with temperature rising at 100~500 °C, the maximum value is up to 0.031.The ZT values of the bulk Fe4Sb12 samples are higher than those of bulk Fe3CoSb12 at 100~300 °C while lower at 400~500 °C.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Omid Malekan ◽  
Mehdi Adelifard ◽  
Mohamad Mehdi Bagheri Mohagheghi

Purpose In the past several years, CH3NH3PbI3 perovskite material has been extensively evaluated as an absorber layer of perovskite solar cells due to its excellent structural and optical properties, and greater than 22% conversion efficiency. However, improvement and future commercialization of solar cells based on CH3NH3PbI3 encountered restrictions due to toxicity and instability of the lead element. Recently, studies on properties of lead-free and mixture of lead with other cations perovskite thin films as light absorber materials have been reported. The purpose of this paper was the fabrication of CH3NH3Sn1-xPbxI3 thin films with different SnI2 concentrations in ambient condition, and study on the structural, morphological, optical, and photovoltaic performance of the studied solar cells. The X-ray diffraction studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases with increasing the Sn concentration, and improvement in crystallinity and morphology was also observed. All perovskite layers had a relatively high absorption coefficient >104 cm−1 in the visible wavelengths, and the bandgap values varied in the range from 1.46 to 1.63 eV. Perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Design/methodology/approach In this work, the author mixed tin and lead with different percentages in the perovskite thin film. Also, the preparation of these layers and also other layers to fabricate solar cells based on them were conducted in an open and non-glove box environment. Finally, the effect of [Sn/Pb] ratio in the CH3NH3Sn1-xPbxI3 layers on the structural, morphological, optical, electrical and photovoltaic performance have been investigated. Findings CH3NH3Sn1-xPbxI3 (x = 0.0, 0.25, 0.50, 0.75, 1.0) perovskite thin films have been grown by a spin-coating technique. It was found that as tin concentration increases, the X-ray diffraction and FESEM images studies revealed the formation of both CH3NH3PbI3 and CH3NH3SnI3 phases, and improvement in crystallinity, and morphology; all thin films had high absorption coefficient values close to 104 cm−1 in the visible region, and the direct optical bandgap in the layers decreases from 1.63 eV in pure CH3NH3SnI3 to 1.46 eV for CH3NH3Sn0.0.25Pb0.75I3 samples; all thin films had p-type conductivity, and mobility and carrier density increased; perovskite solar cells based on these thin films have been fabricated, and device performance was investigated. Results showed that photo-conversion efficiency (PCE) for the pure CH3NH3PbI3sample was 1.20%. With adding SnI2, PCE was increased to 4.48%. Originality/value The preparation method seems to be interesting as it is in an ambient environment without the protection of nitrogen or argon gas.


2008 ◽  
Vol 368-372 ◽  
pp. 553-555
Author(s):  
H.F. Wang ◽  
Ke Feng Cai ◽  
H. Li ◽  
L. Wang ◽  
X.L. Li

Ba8Ga16Ge30 clathrate material has being intensely investigated as a candidate of promising thermoelectric materials. In this work, Ba8Ga16+xSbxGe30-2x (x=0,1) single crystals have been synthesized by the Ga flux method, using high purity elemental Ba, Sb, Ga, and Ge as starting materials. Powder X-ray diffraction, Scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and Raman spectroscopy were used to characterize the single crystals. Seebeck coefficient of the crystals was measured from 300 to 800 K. The result indicates that the crystals are p-type semiconductor, which is different from the crystals synthesized by the Czochralski method. The Seebeck coefficient almost does not change after doping Sb in the whole temperature measured and it is in the range of 200 to 300μV/K.


2013 ◽  
Vol 690-693 ◽  
pp. 1659-1663
Author(s):  
Hai Fang Zhou ◽  
Xiao Hu Chen

The preparation and characterization of CuInS2 thin films on ITO glass substrates prepared by one-step electrodeposition have been reported. Samples were characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM). The results indicate that CuInS2 is the major phase for the film deposited at -1.0 V, after annealing at 550°C in sulfur atmosphere, and the sample is Cu-rich and p-type semiconductor. Additionally, the energy band gap and carrier concentration for the sample were found to be 1.43 eV and 4.20×1017 cm−3, respectively. Furthermore, the maximum photocurrent density of the sample was found to be -1.15 mA/cm2 under 255 lx illumination, the sample shows the photo-enhancement effect.


2007 ◽  
Vol 534-536 ◽  
pp. 1081-1084 ◽  
Author(s):  
Yuhsuke Takahashi ◽  
Hiroaki Matsushita ◽  
Akinori Katsui

The preparation of single-phase CuLaO2 with delafossite-type structure by means of the solid-state reaction method was investigated using X-ray diffraction. The results showed that notwhistanding the fact that there was a trace of metallic copper, nearly single-phase CuLaO2 was obtained by using La(OH)3 as a lanthanum source and by firing the mixed powder with nonstoichiometric composition ratio of La(OH)3:Cu2O =1:1.425 in a vacuum at 1273 K for 10 h. The measurement of electrical conductivity and Seebeck coefficient showed that CuLaO2 thus obtained was a p-type semiconductor and had a Seebeck coefficient of approximately 70 /V/K.


2018 ◽  
Vol 36 (2) ◽  
pp. 209-216 ◽  
Author(s):  
C.H. Voon ◽  
B.Y. Lim ◽  
S.C.B. Gopinath ◽  
Y. Al-Douri ◽  
K.L. Foo ◽  
...  

Abstract Cuprous oxide, a narrow bandgap p-type semiconductor, has been known as a potential material for applications in supercapacitors, hydrogen production, sensors, and energy conversion due to its properties such as non-toxicity, easy availability, cost effectiveness, high absorption coefficient in the visible region and large minority carriers diffusion length. In this study, Cu2O nanostructured thin film was fabricated by anodizing of Cu plates in ethylene glycol containing 0.15 M KOH, 0.1 M NH4F and 3 wt.% deionized water. The effects of anodizing voltage and temperature of electrolyte were investigated and reported. It was found that nanoporous Cu2O thin film was formed when anodizing voltages of 50 V and 70 V were used while a dense Cu2O thin film was formed due to the aggregation of smaller nanoparticles when 30 V anodizing voltage was used. Nanoplatelets thin film was formed when the temperature of electrolyte was reduced to 15 °C and 5 °C. X-ray diffraction confirmed the presence of Cu2O phase in thin film formed during anodizing of Cu plates, regardless of the anodizing voltage and temperature of electrolyte. Photoluminescence spectroscopy showed the presence of Cu2O peak at 630 nm corresponding to band gap of 1.97 eV. A mechanism of the formation of Cu2O thin film was proposed. This study reported the ease of tailoring Cu2O nanostructures of different morphologies using anodizing that may help widen the applications of this material


2011 ◽  
Vol 71-78 ◽  
pp. 3741-3744
Author(s):  
Ke Gao Liu ◽  
Jing Li

For investigating the thermoelectric properties, bulk FeSb2and the composite of CoSb3:FeSb2=7:3 was prepared via sintering. The phases of samples were analyzed by X-ray diffraction and their thermoelectric properties were tested by electric constant instrument and laser thermal constant instrument. Experimental results show that, bulk FeSb2and the composite of CoSb3:FeSb2=7:3 are P-type semiconductor materials. The electric resistivity of bulk FeSb2sample increases with temperature rising while that of the composite (CoSb3:FeSb2=7:3) decreases with temperature rising. The Seebeck coefficient of the composite (CoSb3:FeSb2=7:3) is evidently higher than that of bulk FeSb2. The thermal conductivities of the composite (CoSb3:FeSb2=7:3) are relatively lower than those of bulk FeSb2. TheZTvalues of bulk FeSb2sample are lower than those of the composite (CoSb3:FeSb2=7:3), that of the later increases with temperature rising at 100~500°C, the maximum value is up to 0.1647.


2013 ◽  
Vol 1494 ◽  
pp. 77-82
Author(s):  
T. N. Oder ◽  
A. Smith ◽  
M. Freeman ◽  
M. McMaster ◽  
B. Cai ◽  
...  

ABSTRACTThin films of ZnO co-doped with lithium and phosphorus were deposited on sapphire substrates by RF magnetron sputtering. The films were sequentially deposited from ultra pure ZnO and Li3PO4 solid targets. Post deposition annealing was carried using a rapid thermal processor in O2 and N2 at temperatures ranging from 500 °C to 1000 °C for 3 min. Analyses performed using low temperature photoluminescence spectroscopy measurements reveal luminescence peaks at 3.359, 3.306, 3.245 eV for the co-doped samples. The x-ray diffraction 2θ-scans for all the films showed a single peak at about 34.4° with full width at half maximum of about 0.17°. Hall Effect measurements revealed conductivities that change from p-type to n-type over time.


1996 ◽  
Vol 449 ◽  
Author(s):  
P. Kung ◽  
A. Saxler ◽  
D. Walker ◽  
X. Zhang ◽  
R. Lavado ◽  
...  

ABSTRACTWe present the metalorganic chemical vapor deposition growth, n-type and p-type doping and characterization of AlxGa1-xN alloys on sapphire substrates. We report the fabrication of Bragg reflectors and the demonstration of two dimensional electron gas structures using AlxGa1-xN high quality films. We report the structural characterization of the AlxGa1-xN / GaN multilayer structures and superlattices through X-ray diffraction and transmission electron microscopy. A density of screw and mixed threading dislocations as low as 107 cm-2 was estimated in AlxGa1-xN / GaN structures. The realization of AlxGa1-xN based UV photodetectors with tailored cut-off wavelengths from 365 to 200 nm are presented.


Sign in / Sign up

Export Citation Format

Share Document