Effect of Heat Treatment on Microstructure Evolution and Mechanical Behavior of SKLB3 Alloy

2017 ◽  
Vol 898 ◽  
pp. 380-386
Author(s):  
Wei Yuan ◽  
Dong Mei Liu ◽  
Qiang Song Wang ◽  
Guo Liang Xie

In this paper, the effect of heat treatment on the microstructure and mechanical properties of hot forging Cu-Ni alloy was studied. Specimens of hot forged Cu-Ni alloy were subjected to first solution treated at 900oC for 2hrs and then aged at different temperatures for 2hrs. The mechanical properties including tensile performance and impact energy, and the microstructure were measured for specimens before and after heat treatment. The results show that both solution and aging treatment have an influence on the grain growth. After heat treatment, the tensile strength decreases very slightly but the yield strength decreases seriously from 235.96MPa to 136.12MPa, while the elongation increases sharply from 36% to 48%. It was also observed that hardness values of the heat-treated alloys are all lower than that of the hot forged alloy. The measurement of Charpy impact energy with V-type notch was performed at 298K and 77K for different specimens. At both temperatures, the impact energies of the specimens are higher than 200J. The microstructure results show that at both temperatures, the alloys are fractured in a ductile mode.

2017 ◽  
Vol 62 (2) ◽  
pp. 1341-1346 ◽  
Author(s):  
K.-A. Lee ◽  
Y.-K. Kim ◽  
J.-H. Yu ◽  
S.-H. Park ◽  
M.-C. Kim

AbstractThis study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs) on microstructure and impact toughness of the material. Initial microstructural observation identified prior-βgrain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment,αandβphase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.


2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


2014 ◽  
Vol 881-883 ◽  
pp. 1317-1329 ◽  
Author(s):  
Mahmoud M. Tash ◽  
Saleh Alkahtani

The present study was conducted to investigate the effect of heat treatment on the aging and mechanical behavior of Al-Cu-Mg-Li-Zr , Al-Mg-Si and and Al-Mg-Zn alloys (8090 , 6082 and 7075). The effect of cold work after solution treatment, aging parameters (time and temperature) on the microstructure and mechanical properties were studied. Attempts are made to determine the combined effect of cold work and aging treatment on the hardness, UTS and microstructure for these alloys. By study the impact of different heat treatments for Al-Mg-Si alloys (6082), Al-Cu-Mg-Li-Zr (8090) and Al-Mg-Zn (7075) aluminum alloys on the hardness and mechanical properties, it is possible to determine conditions necessary to achieve better mechanical properties and the maximum levels of hardness and values corresponding to those considered suitable for commercial applications of these alloys.Design of Experiment (DOE) method in Minitab is used to measure the impact of various factors and how they relate. Correlation between the hardness and different metallurgical factors for these alloys at both quantitative and qualitative are investigated and analysed. A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of cold work and heat treatment parameters and any interactions between them on the hardness of the above alloys. A mathematical model is developed to relate the alloy hardness with the different metallurgical parameters to acquire an understanding of the effects of these variables and their interactions on the hardness of wrought Al-alloys. It is noticed that cold work, following solution treatment, accelerates the precipitation rate leading to a rise in strength


2017 ◽  
Vol 36 (8) ◽  
pp. 855-861
Author(s):  
Yong Pan ◽  
Junwei Cui ◽  
Weixin Lei ◽  
Jie Zhou ◽  
Zengsheng Ma

AbstractEffects of heat treatment on the mechanical properties of Ni films on 430 stainless steel substrate were investigated. The Ni films were annealed at heat treatment temperatures ranging from 0 °C to 800 °C for 2 h. The surface morphology, composition, and texture orientation of Ni films were studied by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The load–indentation depth curves of Ni films before and after heat treatment were measured by using nanoindentation method. In conjunction with finite element modeling and dimensional analysis, the stress–strain relationships of Ni films on 430 stainless steel substrate at different temperatures are successfully obtained by using a power-law hardening model.


2017 ◽  
Vol 753 ◽  
pp. 218-221
Author(s):  
Awad Eisa Gaib Alla Mohamed ◽  
Khairi Abdulsalam

In this paper the effect of chromium element on some mechanical properties of gray cast iron is studied .The work was divided in to four categories, each category has three samples; each sample has three different chromium content 0.0%, 1.7%, 3.7%. The mechanical properties were investigated (hardness and impact) before and after the heat treatment. The heat treatment was carried out for period of 12 minutes at two different temperatures. The results confirmed that durability, toughness, and hardness are proportional to the chromium content. The ultimate aim of this research is to enhance the mechanical properties of gray cast iron by adding chromium element.


2011 ◽  
Vol 467-469 ◽  
pp. 257-262
Author(s):  
Guo Fa Mi ◽  
Jin Zhi Zhang ◽  
Hai Yan Wang

Alloys were produced by casting of Cu-Al-Fe-Be and Cu-Al-Fe-Ni aluminum bronzes and aged. The microstructures and mechanical properties were evaluated. The results indicated that solution and aging treatment can significantly improve the plasticity of Cu-Al-Fe-Be and Cu-Al-Fe-Ni, while the strength and hardness remained in the quenched level. Extending the aging time can effectively enhance the mechanical properties of alloys, and the longer the aging time, the higher the electric resistance of alloys. According to the results, the mechanical properties of the Cu-Al-Fe-Be alloy can be improved remarkably by solution treatment for 120 min at 950°C, followed by aging treatment for 120 min at 350°C, and quenched. While the most suitable heat treatment for the Cu-Al-Fe-Ni alloy was solution treatment 120 min at 950°C, followed by aging for 120 min at 450°C, and quenched. The experimental result also suggested that the Cu-Al-Fe-Be alloy possessed higher hardness and tensile strength compared to the Cu-Al-Fe-Ni alloy.


2018 ◽  
Vol 777 ◽  
pp. 397-401
Author(s):  
Qiang Zhang ◽  
Zhe Wu ◽  
Hong Wu Li

In this paper, the mechanical properties of Q355NH resistant steel welded joints are studied. Through the analysis of mechanical properties of welded joints, the results showed that the tensile strength of the welded joints decreased after annealing and the elongation increased. The impact test results of tensile specimens before and after annealing showed that the impact energy of the weld area increased greatly after annealing, while the impact energy of the heat affected zone changed little. Furtherly, fatigue strength of specimens before and after annealing was compared, and the results showed that under the condition of high cycle fatigue, the un-annealed specimens were broken and the fracture position was located on the parent metal, whereas the annealed specimens did not break.


2011 ◽  
Vol 264-265 ◽  
pp. 451-456 ◽  
Author(s):  
T.A. Lenda ◽  
S. Mridha

Charpy impact tests were conducted on carbon reinforced epoxy composites fabricated by hand lay-up method using 0.47, 0.56 and 0.66 carbon fiber volume fractions; tests were conducted at temperatures between -60oC to 60oC. The impact strength was found, in general, to increase when the samples were fractured at temperatures above 0oC and the impact strength decreased with the increase of fiber content. The impact energy absorption was highest of 270 KJm-2 with 47 vol% fiber when fractured at +60oC and it reduced to 130 KJm-2 at -60oC. With decreasing the fracture temperature and increasing the fiber content the impact strength reduced significantly. The reduction of impact energy was from 235 KJm-2 to 107 KJm-2 for 56 vol% fiber and from 196 KJm-2 to 90 KJm-2 for 66 vol% fiber when fractured at +60oC and -60oC, respectively. Failure occurred mostly by fiber delamination; fiber splitting and matrix cracking were also present. Delamination was more in specimens tested at -60oC while fiber splitting and matrix cracking were more when fractured at +60oC.


2014 ◽  
Vol 794-796 ◽  
pp. 267-272
Author(s):  
Salar Bozorgi ◽  
Kevin Anders ◽  
Christoph Angermeier ◽  
Christian Chimani

The automotive applications using heat-treatable aluminum cast alloys are designed for high impact energy which can be improved using specified casting process and different heat treatment. In this study an economical and convent squeeze casting machine was used to produce the u-profile with 3mm wall thickness under controlled solidification conditions. The casted samples were used for mechanical and metallographical characterization. The mechanical properties of alloys containing different amount of Fe, Mn und Mg were determined as a function of different heat treatment condition such as modified T7 and Silicon Spheroidization Treatment (SST). The microstructure of casted alloys were quantificational determined by a combination of light optical microscope and scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) module to identify the morphology and chemical composition of intermetallic eutectic phases. The results of Charpy impact test show that impact energy increases after modified T7 or SST heat treatment significantly compared with the as cast state. Furthermore the impact energy is less in the higher Mg containing alloys (0.15wt.%) compared with the less Mg containing alloy (0.07wt.%).


Sign in / Sign up

Export Citation Format

Share Document