Experimental Study of Charge Motion in a Tumbling Ball Mill

2017 ◽  
Vol 899 ◽  
pp. 119-123
Author(s):  
Marcela Vieira Caixeta Machado ◽  
V. Straatmann ◽  
Claudio Roberto Duarte ◽  
Marcos Antonio de Souza Barrozo

Tumbling ball mills are a common comminution device in the mineral industry processing, wherein the particle size reduction is performed by action of the grinding media. Different forms of transverse motion in a rotating cylinder have been studied by many researchers. The aim of this paper was to study the transitional phenomena between cascading, cataracting and centrifuging motion. In order to observe these transitions, experiments were carried out in a tumbling mill of 300 mm diameter, and three sizes of chrome steel balls were used as grinding media. Each size of ball was employed in three different lengths of the mill with the purpose to investigate the end-walls effect in the behavior ball charge. The image analysis technique was employed to identify the transition regions. A high-speed camera with maximum speed of 2000 frames/s was used to record images. Experimental data showed it was not found the end-wall effects on the transitional behavior, and this effect can be assessed in numerical studies by analyze of the specularity coefficient.

2013 ◽  
Vol 67 (5) ◽  
pp. 747-751 ◽  
Author(s):  
Aleksandar Fistes ◽  
Dusan Rakic ◽  
Biljana Pajin ◽  
Ljubica Dokic ◽  
Ivana Nikolic

A laboratory ball mill consisting of vertical cylinder, equipped with a rotating shaft with arms, and filled with steel balls as a grinding medium has been used in the experiments. The aim of the study was to examine the effect of agitator shaft speed and amount of grinding media (steel balls) on power requirements and energy consumption of a ball mill. With constant mass of the steel balls (20 kg, 30 kg and 40 kg), the agitator shaft speed was increased from 10% to 100% of the maximum speed which corresponds to a speed of 50 rpm. The power consumption (W) was recorded upon which milling energy consumption (J/kg) has been calculated. The results were statistically analyzed using ANOVA. The increase of the agitator shaft speed, in steps of 10% to the maximum speed of 50 rpm, led to a statistically significant increase in milling energy consumption. At low agitator shaft speed (10%), increase in the mass of the steel balls had no influence on the power requirements. Power requirements for the grinding runs using 30 kg and 40 kg are similar and higher compared to power requirement in trial with 20 kg, as agitator shaft speed increases from 20% to 70%. At high agitator shaft speeds (?80%), increase in steel balls mass led to the significant increase in power requirements of the ball mill.


2021 ◽  
Vol 11 (10) ◽  
pp. 4390
Author(s):  
Carlos Sosa ◽  
Alberto Lorenzo ◽  
Juan Trapero ◽  
Carlos Ribas ◽  
Enrique Alonso ◽  
...  

The aim of this study was (I) to establish absolute specific velocity thresholds during basketball games using local positional system (LPS) and (II) to compare the speed profiles between various levels of competitions. The variables recorded were total distance (TD); meters per minute (m·min); real time (min); maximum speed (Km h−1), distance (m), percentage distance, and percentage duration invested in four speed zones (standing–walking; jogging; running; and high-speed running). Mean and standard deviation (±SD) were calculated, and a separate one-way analysis of variance was undertaken to identify differences between competitions. TD (3188.84 ± 808.37 m) is covered by standing–walking (43.51%), jogging (36.58%), running (14.68%), and sprinting (5.23%) activities. Overall, 75.22% of the time is invested standing–walking, jogging (18.43%), running (4.77%), and sprinting (1.89%). M·min (large effect size), % duration zone 2 (moderate effect size); distance zone 4 (large effect size), and % distance zone 4 (very large effect size) are significantly higher during junior than senior. However, % distance zone 1 (large effect size) and % duration zone 1 (large effect size) were largely higher during senior competition. The findings of this study reveal that most of the distance and play time is spent during walking and standing activities. In addition, the proportion of time spent at elevated intensities is higher during junior than in senior competition.


1996 ◽  
Vol 118 (2) ◽  
pp. 178-187 ◽  
Author(s):  
E. D. Tung ◽  
M. Tomizuka ◽  
Y. Urushisaki

Experiments are performed for end milling aluminum at 15,000 RPM spindle speed (1,508 m/min cutting speed) and up to 3 m/min table feedrate using an experimental machine tool control system. A digital feedforward controller for feed drive control incorporates the Zero Phase Error Tracking Controller (ZPETC) and feedforward friction compensation. The controller achieves near-perfect (±3 μm) tracking over a 26 mm trajectory with a maximum speed of 2 m/min. The maximum contouring error for a 26 mm diameter circle at this speed is less than 4 μm. Tracking and contouring experiments are conducted for table feedrates as high as 10 m/min. Frequency domain analysis demonstrates that the feedforward controller achieves a bandwidth of 10 Hz without phase distortion. In a direct comparison of accuracy, the machining errors in specimens produced by the experimental controller were up to 20 times smaller than the errors in specimens machined by an industrial CNC.


2021 ◽  
Vol 26 (3-4) ◽  
pp. 282-290
Author(s):  
S.V. Volobuev ◽  
◽  
V.G. Ryabtsev ◽  

The I/О synchronization scheme plays an important role in achieving maximum speed and reliability of data transmission during memory operation. This paper presents the interface architecture of the DDR SDRAM test diagnostic device. It was demonstrated that the proposed interface components provide the formation of a bidirectional synchro signal for gating written and read data when performing test diagnostics of chips and DDR SDRAM memory devices. Compared to traditional methods, the proposed interface components were made on integrated electronic elements, which reduced the size and power consumption. It has been established that the use of a multiphase synchronization system to implement the interface eliminated the use of delay lines, the disadvantages of which are large dimensions and the complexity of changing the delay time. The interface components under consideration are intended for use in test diagnostics devices that have a multiprocessor structure, which increases the speed of forming test actions and reference reactions. The performed functional modeling and debugging of strobe signal generators confirmed the feasibility of the designs. The proposed interface of the test diagnostics device allows performing test diagnostics of modern high-speed chips and semiconductor memory modules at the operating frequency, which increases the reliability of the results obtained. Interface components can be used by manufacturers of test diagnostics tools for modern high-speed storage devices.


Author(s):  
Kevin Prieur ◽  
Daniel Durox ◽  
Thierry Schuller ◽  
Sébastien Candel

This article reports experiments carried out in the MICCA-spray combustor developed at EM2C laboratory. This system comprises 16 swirl spray injectors. Liquid n-heptane is injected by simplex atomizers. The combustion chamber is formed by two cylindrical quartz tubes allowing full optical access to the flame region and it is equipped with 12 pressure sensors recording signals in the plenum and chamber. A high-speed camera provides images of the flames and photomultipliers record the light intensity from different flames. For certain operating conditions, the system exhibits well defined instabilities coupled by the first azimuthal mode of the chamber at a frequency of 750 Hz. These instabilities occur in the form of bursts. Examination of the pressure and the light intensity signals gives access to the acoustic energy source term. Analysis of the phase fluctuations between the two signals is carried out using cross-spectral analysis. At limit cycle, large pressure fluctuations of 5000 Pa are reached, and these levels persist over a finite period of time. Analysis of the signals using the spin ratio indicates that the standing mode is predominant. Flame dynamics at the pressure antinodal line reveals a strong longitudinal pulsation with heat release rate oscillations in phase and increasing linearly with the acoustic pressure for every oscillation levels. At the pressure nodal line, the flames are subjected to large transverse velocity fluctuations leading to a transverse motion of the flames and partial blow-off. Scenarios and modeling elements are developed to interpret these features.


Vehicles ◽  
2022 ◽  
Vol 4 (1) ◽  
pp. 30-41
Author(s):  
Bruce W. Jo

High-speed capsular vehicles are firstly suggested as an idea by Elon Musk of Tesla Company. Unlike conventional high-speed trains, capsular vehicles are individual vessels carrying passengers and freight with the expected maximum speed of near 1200 [km/h] in a near-vacuum tunnel. More individual vehicle speed, dispatch, and position control in the operational aspect are expected over connected trains. This numerical study and investigation evaluate and analyze inter-distance control and their characteristics for high-speed capsular vehicles and their operational aspects. Among many aspects of operation, the inter-distance of multiple vehicles is critical toward passenger/freight flow rate and infrastructural investment. In this paper, the system’s equation, equation of the motion, and various characteristics of the system are introduced, and in particular control design parameters for inter-distance control and actuation are numerically shown. As a conclusion, (1) Inter-distance between vehicles is a function of error rate and second car start time, the magnitude range is determined by second car start time, (2) Inter-distance fluctuation rate is a function of error rate and second car start time, however; it can be minimized by choosing the correct second car start time, and (3) If the second car start time is chosen an integer number of push-down cycle time at specific velocity error rate, the inter-distance fluctuation can be zero.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 132
Author(s):  
Paolo Righettini ◽  
Roberto Strada ◽  
Filippo Cortinovis

Several industrial robotic applications that require high speed or high stiffness-to-inertia ratios use parallel kinematic robots. In the cases where the critical point of the application is the speed, the compliance of the main mechanical transmissions placed between the actuators and the parallel kinematic structure can be significantly higher than that of the parallel kinematic structure itself. This paper deals with this kind of system, where the overall performance depends on the maximum speed and on the dynamic behavior. Our research proposes a new approach for the investigation of the modes of vibration of the end-effector placed on the robot structure for a system where the transmission’s compliance is not negligible in relation to the flexibility of the parallel kinematic structure. The approach considers the kinematic and dynamic coupling due to the parallel kinematic structure, the system’s mass distribution and the transmission’s stiffness. In the literature, several papers deal with the dynamic vibration analysis of parallel robots. Some of these also consider the transmissions between the motors and the actuated joints. However, these works mainly deal with the modal analysis of the robot’s mechanical structure or the displacement analysis of the transmission’s effects on the positioning error of the end-effector. The discussion of the proposed approach takes into consideration a linear delta robot. The results show that the system’s natural frequencies and the directions of the end-effector’s modal displacements strongly depend on its position in the working space.


Author(s):  
Василий Богданов ◽  
Vasiliy Bogdanov ◽  
Юрий Фадин ◽  
Yuriy Fadin ◽  
Юлия Донцова ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document