Potash Erosion Resistance of Chromium-Containing Materials

2018 ◽  
Vol 281 ◽  
pp. 144-149
Author(s):  
Qiong Luo ◽  
Hua Zhi Gu ◽  
Ao Huang ◽  
Mei Jie Zhang

Compared with the traditional entrained flow gasifier, coal catalytic gasifier has the advantages of low reaction temperature, high production efficiency and low energy consumption, but it also has higher requirements for potash erosion resistance. Chromium-containing material is commonly used as lining material for gasification furnaces. In this paper, potash erosion resistance of chromium-containing raw materials and products were respectively researched by using powder tabletting sintering and potassium vapor erosion method. The potash erosion resistance are characterized by XRD and SEM. The study show that:(1)There are obvious potassium salt deposition on the surface of chromium-containing raw materials and products after potash erosion experiment. Potash reacts with chrome-corundum and magnesium-chrome spinel to form K2CrO4,and reacts with chromium oxide to form K2Cr2O7at 750°C. (2)Potassium vapor enters into chromium-containing products through pores and leads to crack formation and volume change, which destroy the structure and reduce high temperature volume stability of material.

Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Ludmila Kalčáková ◽  
Matej Pospiech ◽  
Bohuslava Tremlová ◽  
Zdeňka Javůrková ◽  
Irina Chernukha

To increase production efficiency of meat products, milk protein additives are often used. Despite a number of advantages, use of dairy ingredients involves a certain risk, namely the allergenic potential of milk proteins. A number of methods have been developed to detect milk-origin raw materials in foodstuffs, including immunological reference methods. This study presents newly developed immunohistochemical (IHC) methods for casein detection in meat products. Casein was successfully detected directly in meat products where sensitivity was determined at 1.21 and specificity at 0.28. The results obtained from the IHC were compared with the Enzyme-Linked Immuno Sorbent Assay (ELISA) and there was no statistically significant difference between the IHC and ELISA methods (p > 0.05). The correspondence between the methods was 72% in total. The highest correspondence was reached in frankfurters (90%), the lowest in canned pâté (44%).


2013 ◽  
Vol 380-384 ◽  
pp. 186-190
Author(s):  
Ya Nan Huang ◽  
Da Lu Liu ◽  
Feng Sheng Sun ◽  
Yu Wang ◽  
Ming Xing Gao

When comparing with ship construction within newly-built docks or on tilting slipways, ship constructing on the flat earth method can be said to be a new ship-building technique by which ship is built on a platform and launched with the aid of floating-dock or barge. Some obvious advantages of this technique are such as less investment in basic facilities, low production cost, high production efficiency, wide applicability of ship types, ability to overcome the bottle-neck effect of berths and docks. In this paper, a bulk-carrier being taken as an example, the design of launching processing scheme on the horizontal shipway includes calculation of launching weight and determination of hoisting force during the whole towing period. The whole towing process of hull can be divided into three stages, the first is from the static state to the moment of beginning to move, the second is from the initial position of movement to the front of slipway onto which the hull is predicted to be pulled, and the third is from the front of slipway to the designated position on the floating dock. Subsequently, after the hull being sealed and positioned correctly, the floating dock for launching may be towed to deeper water zone and the hull can be buoyed up on the water surface, and the whole launching process can be completed. From the research, the conclusion is made that the launching technique of this paper is available and feasible. Especially, this paper is the initial application of this method on the 15000t launching ship home and has the epoch-making sense.


2006 ◽  
Vol 3 (3) ◽  
pp. 346-350 ◽  
Author(s):  
Antonio Carlos Caetano de Souza ◽  
José Luz-Silveira ◽  
Maria Isabel Sosa

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity. The use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7Nm3∕h of hydrogen as feedstock of a 1kW PEMFC. The global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206°C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700°C. However, when the temperature attains 700°C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700°C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However, the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.


2021 ◽  
Vol 4 (4) ◽  
pp. 182-188
Author(s):  
T. S. BUDINA ◽  
◽  
N. Kh. KURBANOV ◽  
L. M. PROKOFIEVA ◽  
V. G. SHIYKO ◽  
...  

The article is devoted to the problems of accounting for industrial waste (technogenic deposits) on the example of ash and slag dumps. The influence of the organization of accounting for technogenic deposits on the indicators of cost, profit, and profitability of the enterprise, if these wastes are sold or used as secondary material, is studied. It is proved that the accounting system should accumulate and form such information that would allow with a sufficient degree of accuracy to determine the economic efficiency of the integrated use of raw materials, would aim at identifying reserves for increasing production efficiency. According to the authors, accounting under IFRS provides a more accurate assessment of ash and slag waste, which ultimately will allow the most accurate determination of the financial result from their further use.


Author(s):  
V. Nelyubova ◽  
V. Babaev ◽  
Nataliya Alfimova ◽  
S. Usikov ◽  
O. Masanin

fiber concrete is one of the types of effective building materials that ensure the operational reliability of structures due to a set of unique properties. However, the maximum physicomechanical characteristics of this type of products are achieved only if the fiber is evenly distributed in the concrete matrix and the optimum ratio of raw materials is reached. In this connection, the aim of the work was to increase the production efficiency of fiber-reinforced concrete by optimizing the formulation and technological parameters of its manufacture. The optimal method of introducing the fiber into the concrete mix and the type of superplasticizer were previously determined, which allowed ensuring the maximum physicomechanical characteristics of the products. Optimization of prescription parameters was carried out using the method of mathematical planning of the experiment, where the amount of cement, superplasticizer and basalt fiber were varied. After processing the results, the dependences of the compressive strength on variable factors were obtained, which would allow to select the optimal dosages of raw materials for given mechanical characteristics of the products.


1994 ◽  
Vol 142 ◽  
pp. 877-881
Author(s):  
David Eichler

AbstractMany proficient gamma-ray sources show energy spectra that are consistent with E−2 primary spectra. Such sources include recently identified gamma-ray quasars and some gamma-ray bursts. Assuming thick target conversion, this is consistent with shock acceleration, and the dominance of the gamma rays of the luminosity is also consistent with previous predictions of high production efficiency of fresh cosmic rays in shocks. The spectral cutoffs in the gamma rays may offer clues as to whether the high-energy particles are electrons or protons. Resolution of this matter might have implications for the nature of the sources and for theory of shock accelerated electrons.Subject headings: acceleration of particles — gamma rays: bursts — shock waves


2014 ◽  
Vol 621 ◽  
pp. 158-164
Author(s):  
Hao Yan Wang ◽  
Zhe He Yao ◽  
De Qing Mei

Micro/meso forming, as an emerging manufacturing process for miniature metallic workpieces, has attracted great attention since the 1990s due to its high production efficiency, low material waste and high precision. Due to the so-called size effects in the scaling down, many traditional theories in metal forming cannot be simply applied to the micro/meso forming. In this study, the micro/meso upsetting experiments of Brass H62 were conducted at various temperatures. The stress−strain curves in the experiments were measured and compared. The effects of the temperature and the sample size on the flow stress were discussed. It is found that the flow stress of the material decreased with the decrease of the sample size at room temperature. However, the flow stress of the material may increase with the decrease of the sample size at elevated temperatures. The results indicate that the size effects in the micro/meso forming are significantly affected by the processing temperature.


Holzforschung ◽  
2018 ◽  
Vol 72 (9) ◽  
pp. 745-752 ◽  
Author(s):  
Shu Hong ◽  
Zhongji Gu ◽  
Ling Chen ◽  
Ping Zhu ◽  
Hailan Lian

AbstractPhenol formaldehyde (PF) resin is a well-tried adhesive for manufacturing laminated veneer lumber (LVL). PF has a high bonding strength, good cold pressing property and contributes a lot to the high production efficiency of LVL. In the present paper, PFs were synthesized at three different alkaline condition levels with a molar formaldehyde to phenol (F/P) ratio of 2.25. The bonding strength of PFs was not influenced by the alkalinity. Compared with PFs synthesized under alkalinity of 1 and 4%, PF with 8% alkalinity formed a resin with a high mole mass (MM), uniform mole mass distribution (MMD) and a high cross-linking density. With PF8%, the cold pressing property could be shortened from 30 to 12 min in the winter time. Cured PF8%had a higher cross-linking density than PF1%and PF4%. PF8%has a high potential for industrial production of LVL.


2019 ◽  
pp. 152808371985532 ◽  
Author(s):  
Fei Tian ◽  
Gaoming Jiang ◽  
Zhe Gao

Air particulate matter pollution has become a severe environment concern calling for filtration materials with great filtration performance. As the development of seamless forming technology, knitted filtration materials gradually show great potential. This study aimed to develop a novel kind of knitted seamless structure for filtration materials of filter bags with high production efficiency and excellent filtration performance. A new type of the circular weft-knitted seamless weft-insertion fabric (CKSW) filtration materials were developed on the modified circular knitting machine. This CKSW filtration materials consisting of the ground yarns, connection yarns and weft-insertion yarns, polyester full drawn yarns, and polyester draw texturing yarns with different yarn configurations were employed to realize series of CKSW samples. The polytetrafluoroethylene filaments with tourmaline particles were used to verify whether the static electric material produced an adsorption filtration effect on the CKSW filtration materials or not. After pretreatment, the filtration performance of the CKSW filtration materials was evaluated by analyzing its pore size, porosity, and filtration efficiency. Ultimately, the CKSW filtration materials with ground yarns and weft insertion yarns of draw texturing yarn and the connection yarns of full drawn yarn exhibited the most excellent filtration performance. The CKSW filtration materials show a high porosity of 87.14%, the pore size of 67.55 µm, and good filtration efficiency of 91.57% with the particles size of ≥ 5.0 µm. The successful fabrication of such knitted filtration materials may provide ideas for the development of filtration materials with new architecture mainly used as filter bags for baghouse.


Sign in / Sign up

Export Citation Format

Share Document