LTCC 3D FLOW FOCALIZATION DEVICE FOR LIQUID-LIQUID PARTIAL SOLVENT EXTRACTION

2016 ◽  
Vol 2016 (CICMT) ◽  
pp. 000111-000117
Author(s):  
Houari Cobas Gomez ◽  
Jéssica Gonçalves da Silva ◽  
Jocasta Mileski Machado ◽  
Bianca Oliveira Agio ◽  
Francisco Jorge Soares de Oliveira ◽  
...  

Abstract The present work shows a ceramics microfluidic device for partial solvent extraction scheme. The technology used for device fabrication was Low Temperature Cofired Ceramics (LTCC) which allows us for complex and chemical resistant 3D microfluidic devices. The proposed system aims to partially extract the solvent present in a mixture containing aqueous and organic phases. This scheme uses a 3D flow focalization in order to improve the solvent diffusion into the external aqueous phase. The device is composed by three different parts, the input channels distribution, the main channel and the output channels distribution. The designed input channels distribution ensures a centered 3D focalized solvent stream along the main channel. The focalized solvent mixes with the surrounding water thanks to diffusion. Projected output channels take the central fluid out separately from the surrounding. Thus the device has two different outputs, one for the focalized fluid and another one for the waste fluid, which is the aqueous phase plus solvent. For a device concept proof, acetone and water were used as organic and aqueous phases, respectively. COMSOL Multiphysics was used for device microfluidics and chemical transport simulation. The extraction efficiency was the variable used as indicator for device performance validation. The flow rate ratio between phases, total flow rate, main channel length and focalized stream channel output hydraulic diameter (ODH) were used as process variables for simulation purposes. A factorial experimental planning was used in order to analyze the extraction efficiency taking into account process variables effects. From simulation results it was determined main channel length and ODH as the variables with stronger effect on extraction efficiency. Obtained simulated efficiencies were as high as 80.6%. Considering previous results observations a microfluidic device was fabricated with a main channel length of 21,4 mm and ODH of 214,63 μm. Gas chromatography was used to measured acetone concentration in outputs samples and from here the extraction efficiency. Experimental results were in agreement with simulation, returning extraction efficiencies in the order of 80.8% ± 2.2%.

2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Katie Fleming Glass ◽  
Clara Mata ◽  
Ellen K. Longmire ◽  
Allison Hubel

Microfluidics can be used in a variety of medical applications. In this study, a microfluidic device is being developed to remove cryoprotective agents from cells post thaw (1–150ml). Hematopoietic stem cells are typically cryopreserved with Dimethyl sulphoxide (DMSO), which is toxic upon infusion. Conventional methods of removing DMSO results in cells losses of 25–30%. The overall objective of this study is to characterize the influence of flow geometry on extraction of DMSO from a cell stream. For all the flow geometries analyzed, flow rate fraction, Peclet Number, and channel geometry had the greatest influence on extraction of DMSO from the cell stream. The range of flow rate fractions that can achieve the desired removal ranges between 0.10 and 0.30. Similarly, the range of Peclet numbers is 250–2500. Distinct differences in channel length could be observed between the different flow configurations studied. The flow rates and channel geometries studied suggest that clinical volumes of cell suspensions (1–100ml) can be processed using a multi-stage microfluidic device in short periods of time (<1hr).


2013 ◽  
Vol 67 (2) ◽  
Author(s):  
Cong-Shan Zhou ◽  
Ping Xu ◽  
Ke-Wen Tang ◽  
Xin-Yu Jiang ◽  
Tao Yang ◽  
...  

AbstractEnantioselective extraction of hydrophilic 2-chloromandelic acid (CMA) enantiomers from organic to aqueous phase with hydroxypropyl-β-cyclodextrin (HP-β-CD) as the selector was investigated. Equilibrium of the extraction system was modeled using a reactive extraction model with a homogeneous aqueous phase reaction. The influence of important process variables on the extraction efficiency, such as the type of the organic solvent and β-cyclodextrin derivatives (β-CDs), concentration of the selector, pH and temperature, was investigated by experiment and modeling. Important parameters of this model were determined experimentally. Results showed that the experimental data agree with the model prediction perfectly and the model was further applied to accurately predict the extraction efficiency influenced simultaneously by pH and the concentration of HP-β-CD. Combining the experiment and the model data, the best extraction conditions were: pH of 2.5, HP-β-CD concentration of 0.05 mol L−1, and temperature of 5°C, providing the enantioselectivity of 1.285 and the performance factor (pf) of 0.011.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 398
Author(s):  
Adam Balinski ◽  
Volker Recksiek ◽  
Norman Kelly

Solvent extraction is one of the common methods for the recovery of boric acid (or boron) from aqueous solutions. A wide variety of different compounds including monohydric alcohols has been tested, and there is wide recognition that they are rather ineffective compared to other extractants such as diols. Nevertheless, monohydric alcohols find application in industrial processes, demonstrating their efficiency. The intention of this study is to clarify this discrepancy and to provide an overall picture of monohydric alcohols as an extractant for boric acid. Five different monohydric alcohols are the object of this study: n-octanol, 2-ethyl-1-hexanol, 2-butyl-1-octanol, 2-octanol and 3,7-dimethyl-3-octanol. A special focus of this work is the examination of the effect of the structure of the carbon chain and the effect of the composition of the aqueous phase on the extraction efficiency. As well as the extraction efficiency for boric acid, other important properties are examined such as the viscosity of the organic phase, the solubility of alcohols in the aqueous phase and the co-extraction of salts used as a salting-out agent (NaCl, Na2SO4, MgCl2, LiCl, LiNO3). Finally, a numerical algorithm is developed to calculate the relationship between the number of theoretical stages and the phase ratio at equilibrium for selected extraction systems.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rajesh B. Gujar ◽  
Parveen K. Verma ◽  
Prasanta K. Mohapatra ◽  
Mudassir Iqbal ◽  
Jurriaan Huskens ◽  
...  

Abstract Neptunium is one of the most important minor actinide elements with some of its isotopes having very long half-lives, therefore necessitating its separation from acidic radioactive wastes. Solvent extraction of Np4+ and NpO2 2+ was studied using three multiple diglycolamide (DGA) extractants with n-propyl, n-octyl and 3-pentyl substituents termed as L I , L II and L III , respectively, in a mixed diluent of 5% isodecanol and 95% n-dodecane. For comparison purpose, the extraction of Pu4+ and UO2 2+ was carried out under identical conditions. The extraction efficiency of the ligands for the tetravalent ions followed the trend: L II  > L I  > L III , which changed to L III  > L II  > L I for the hexavalent ions. While the extraction of the tetravalent ions was reasonably good (ca. 90–98%) with an extremely low (5.0 × 10−5 M) ligand concentration, poor extraction (ca. 5–16%) of the hexavalent ions was seen even with a 20 times higher concentration of the ligand. In general, Pu4+ was better extracted than Np4+, while NpO2 2+ was marginally better extracted then UO2 2+. A ‘solvation’ type extraction mechanism was proposed based on the extraction profiles obtained as a function of the concentrations of the feed nitric acid, extractant as well as nitrate ion. The extracted species were found out to be M(NO3)4·mL and MO2(NO3)2·nL (M = Np or Pu, 1 < m < 2, n ≃ 1).


2006 ◽  
Vol 1127 (1-2) ◽  
pp. 214-220 ◽  
Author(s):  
Yuushi Sai ◽  
Masumi Yamada ◽  
Masahiro Yasuda ◽  
Minoru Seki

Author(s):  
Ali Hassannejadmoghaddam ◽  
Boris Kutschelis ◽  
Frank Holz ◽  
Tomas Börjesson ◽  
Romuald Skoda

Abstract Unsteady 3D flow simulations on a twin-screw pump are performed for an assessment of the radial, circumferential and flank gap flow effect on the pump performance. By means of the overset grid technique rigid computational grids around the counter-rotating spindles yield a high cell quality and a high spatial resolution of the gap backflow down to the viscous sublayer in terms of y^+ &lt; 1 . An optimization of the hole-cutting process is performed on a generic gap flow and transferred to the complex moving gaps in the pump. Grid independence is ensured, and conservation properties of the overset grid interpolation technique are assessed. Simulation results are validated against measured pump characteristics. Pump performance in terms of pressure build-up along the flow path through the spindles and volume flow rate is presented for a wide range of spindle speed and pump head. Flow rate fluctuations are found to depend on head but hardly on speed. By a profound assessment of the respective radial, circumferential and flank gap contribution to the total backflow, the importance of the most complex flank gap is pointed out. Backflow rate characteristics in dependence on the pump head and the pump speed are presented.


2018 ◽  
Vol 19 (2) ◽  
pp. 644-652
Author(s):  
Chulsang Yoo ◽  
Jiho Lee ◽  
Eunsaem Cho

Abstract This study theoretically evaluated the basin concentration time and storage coefficient with their empirical formulas available worldwide. The evaluation results were also validated in the application to major dam basins in Korea. The findings are summarized as follows. As a result of analytical analysis, the concentration time was found to be proportional to the main channel length under laminar flow conditions and to the square of it under turbulent flow conditions, but inversely proportional to the channel slope. It was also found that the storage coefficient and the concentration time are linearly but loosely related. Most empirical formulas for the concentration time concurred with the basic equation form, but just a few for the storage coefficient. Applications to major dam basins in Korea also showed that the concentration time agrees well with the result of theoretical analysis. However, the behavior of the storage coefficient varied much, basin by basin, indicating that additional factors may be needed to explain it.


2010 ◽  
Vol 660-661 ◽  
pp. 419-425 ◽  
Author(s):  
C.M.L. Costa ◽  
L.J.G. Faria ◽  
Cristina dos Santos Rocha Sandra

The coating of vegetable seeds is a very common technique, mainly for the species which have small seeds. One of its functions is to increase the seed size to direct sowing. In the present study the coating of Spilanthes oleracea L. seeds with a polymeric suspension in fluidized bed was analyzed. The effects of process variables on the coating efficiency of top-spray fluidized bed coating were evaluated. The independent variables studied were the flow rate of coating suspension and the air mass flow. The quantification for the entrance variables influence on the coating efficiency and granule growth, as well as the identification of optimal conditions were made by means of an experiment factorial design technique. Polynomial models for the responses: efficiency and relative growth of the particles were deduced. The highest coating efficiency was achieved at a high flow rate of coating suspension.


2013 ◽  
Vol 10 (3) ◽  
pp. 997-1004
Author(s):  
Baghdad Science Journal

Liquid-Liquid Extraction of Cu(II) ion in aqueous solution by dicyclohexyl-18-crown-6 as extractant in dichloroethane was studied .The extraction efficiency was investigated by a spectrophometric method. The reagent form a coloured complex which has been a quantitatively extracted at pH 6.3. The method obeys Beer`s law over range from (2.5-22.5) ppm with the correlation coefficient of 0.9989. The molar absorptivity the stoichiometry of extracted complex is found to be 1:2. the proposed method is very sensitive and selective.


2016 ◽  
Vol 68 (2) ◽  
pp. 279-289 ◽  
Author(s):  
Jelena Jovicic-Petrovic ◽  
Sanja Jeremic ◽  
Ivan Vuckovic ◽  
Sandra Vojnovic ◽  
Aleksandra Bulajic ◽  
...  

Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS) region, ?-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS) analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing.


Sign in / Sign up

Export Citation Format

Share Document