Temperature dependence of high dielectric strength potting materials for medium voltage power modules

2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000249-000255 ◽  
Author(s):  
Chad B. O'Neal ◽  
Brandon Passmore ◽  
Matthew Feurtado ◽  
Jennifer Stabach ◽  
Ty McNutt

Voltage isolation inside power modules is paramount for functional and reliable operation. The dielectric potting materials are further stressed as the overall size of these modules is reduced due to size, weight, and cost considerations while the operating voltage of the modules continue to increase. Voltage ratings of silicon carbide device technologies will continue to increase above 6.5 kV into the tens of kilovolts in the future. Silicon carbide devices are also often operated at higher junction temperatures in order to take advantage of the high temperature capabilities of the material. As the module temperature increases, the dielectric strength of insulating materials in the module tend to decrease, which is a serious consideration for a compact power module operating at many kilovolts. A plurality of high temperature rated, high dielectric strength potting materials were tested for voltage breakdown and leakage current up to 30 kV and 250 °C. A range of different materials, both conventional and novel, were tested including silicones and parylene. Materials were selected with a dielectric strength greater than 500 V/mil, an operating temperature range of 200 °C or higher, and low hardness and modulus of elasticity with the intent of demonstrating the capability of blocking 20 kV or more in a reasonable thickness. A custom test setup was constructed to apply the voltage to test samples while measuring the breakdown voltage and simultaneous recording the leakage current. Test coupons were designed to provide a range of dielectric thicknesses over which to test the dielectric strength. Although voltage isolation may increase with increased dielectric thickness, the V/mil isolation rate often decreases. The performance degradation of these materials over temperature is plotted and deratings are suggested for use with medium voltages at operating temperatures above 175 °C.

2015 ◽  
Vol 12 (4) ◽  
pp. 212-218
Author(s):  
Chad B. O'Neal ◽  
Matthew Feurtado ◽  
Jennifer Stabach ◽  
Ty McNutt ◽  
Brandon Passmore

Voltage insulation inside power modules is paramount for functional and reliable operation. Dielectric potting materials are stressed as the overall size of these modules is reduced due to size, weight, and cost considerations while the operating voltage of these modules continue to increase. In particular, voltage ratings of silicon carbide (SiC) device technologies will continue to increase above 6.5 kV into the tens of kilovolts in the future. SiC devices are also often operated at higher junction temperatures to take advantage of the high-temperature capabilities of the material. As the module temperature increases, the dielectric strength of insulating materials in the module tends to decrease, which is a serious concern for a compact power module operating at many kilovolts. A plurality of high-temperature-rated, high dielectric strength potting materials was tested for voltage breakdown and leakage current up to 30 kV and 250°C. A range of different materials, both conventional and novel, were tested, including silicones and Parylene. Materials were selected with a dielectric strength >20 kV/mm, an operating temperature range of 200°C or higher, and low hardness and modulus of elasticity with the intent of demonstrating the capability of blocking 20 kV or more in a reasonable thickness. A custom test setup was constructed to apply the voltage to test samples while measuring the breakdown voltage and simultaneously recording the leakage current. Test coupons were designed to provide a range of dielectric thicknesses over which to test the dielectric strength. Although voltage isolation may increase with increased dielectric thickness, the volt per millimeter isolation rate often decreases. The performance degradation of these materials over temperature is plotted, and insulation thicknesses are suggested for use with medium voltages at operating temperatures above 175°C.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000312-000317
Author(s):  
Adam Morgan ◽  
Xin Zhao ◽  
Jason Rouse ◽  
Douglas Hopkins

Abstract One of the most important advantages of wide-bandgap (WBG) devices is high operating temperature (>200°C). Power modules have been recognized as an enabling technology for many industries, such as automotive, deep-well drilling, and on-engine aircraft controls. These applications are all required to operate under some form of extreme environmental conditions. Silicone gels are the most popular solution for the encapsulation of power modules due to mechanical stress relief enabled by a low Young's modulus, electrical isolation achieved due to high dielectric strength, and a dense material structure that protects encapsulated devices against moisture, chemicals, contaminants, etc. Currently, investigations are focused on development of silicone gels with long-term high-temperature operational capability. The target is to elevate the temperature beyond 200°C to bolster adoption of power modules in the aforementioned applications. WACKER has developed silicone gels with ultra-high purity levels of < 2ppm of total residual ions combined with > 200°C thermal stability. In this work, leakage currents through a group of WACKER Chemie encapsulant silicone gels (A, B, C) are measured and compared for an array of test modules after exposure to a 12kV voltage sweep at room temperature up to 275°C, and thermal aging at 150°C for up to more than 700 hours. High temperature encapsulants capable of producing leakage currents less than 1μA, are deemed acceptable at the given applied blocking voltage and thermal aging soak temperature. To fully characterize the high temperature encapsulants, silicone gel A, B, and C, an entire high temperature module is used as a common test vehicle. The power module test vehicle includes: 12mil/40mil/12mil Direct Bonded Copper (DBC) substrates, gel under test (GUT), power and Kelvin connected measurement terminals, thermistor thermal sensor to sense real-time temperature, and 12mil Al bonding wires to manage localized high E-Fields around wires. It was ultimately observed that silicone gels B and C were capable of maintaining low leakage current capabilities under 12kV and 275°C conditions, and thus present themselves as strong candidates for high-temperature WBG device power modules and packaging.


2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000297-000304 ◽  
Author(s):  
B. Reese ◽  
B. McPherson ◽  
R. Shaw ◽  
J. Hornberger ◽  
R. Schupbach ◽  
...  

Arkansas Power Electronics International, Inc., in collaboration with the University of Arkansas and Rohm, Ltd., have developed a high-temperature, high-performance Silicon-Carbide (SiC) based power module with integrated gate driver. This paper presents a description of the single phase half-bridge module containing eight Rohm 30 A SiC DMOSFETs in parallel per switch position. The electrical and thermal performance of the system under power is also presented.


2012 ◽  
Vol 2012 (HITEC) ◽  
pp. 000402-000406
Author(s):  
B. Passmore ◽  
J. Hornberger ◽  
B. McPherson ◽  
J. Bourne ◽  
R. Shaw ◽  
...  

A high temperature, high performance power module was developed for extreme environment systems and applications to exploit the advantages of wide bandgap semiconductors. These power modules are rated > 1200V, > 100A, > 250 °C, and are designed to house any SiC or GaN device. Characterization data of this power module housing trench MOSFETs is presented which demonstrates an on-state current of 1500 A for a full-bridge switch position. In addition, switching waveforms are presented that exhibit fast transition times.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000130-000133 ◽  
Author(s):  
Dorothee Dietz ◽  
Yusuf Celik ◽  
Andreas Goehlich ◽  
Holger Vogt ◽  
Holger Kappert

High-temperature passive electronic becomes more and more important, e.g. in the field of deep drilling, aerospace or in automobile industry. For these applications, capacitors are needed, which are able to withstand temperatures up to 300 °C, which exhibit a low leakage current at elevated temperatures, a breakdown voltage above the intended operating voltage and a high capacitive density value. In this paper, investigations of 3D-integration and atomic layer deposition (ALD) techniques to achieve these features are presented. A highly n-doped Si-substrate acts as a bottom electrode. Medium- and high-k dielectrics represent the insulator and the upper electrode consists of Ru, TiN or TiAlCN. The materials can be used at elevated temperatures. At room temperature, the leakage current is less than 10 pA/mm2 without showing a soft-breakdown up to ± 15 V, indicating the absence of Fowler-Nordheim tunneling. At 300 °C and at 3 V the leakage current amounts about 1 nA/mm2 and at 5 V a soft-breakdown is detected.


1994 ◽  
Vol 30 (2) ◽  
pp. 170-171 ◽  
Author(s):  
T Billon ◽  
P. Lassagne ◽  
N. Bécourt ◽  
P. Morfouli ◽  
T. Ouisse ◽  
...  

2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000069-000074
Author(s):  
Khalil El Falahi ◽  
Stanislas Hascoët ◽  
Cyril Buttay ◽  
Pascal Bevilacqua ◽  
Luong-Viet Phung ◽  
...  

More electric aircraft require converters that can operate over a wide temperature range (−55 to more than 200°C). Silicon carbide JFETs can satisfy these requirements, but there is a need for suitable peripheral components (gate drivers, passives. . . ). In this paper, we present a “smart power module” based on SiC JFETs and dedicated integrated gate driver circuits. The design is detailed, and some electrical results are given, showing proper operation of the module up to 200°C.


2012 ◽  
Vol 2012 (1) ◽  
pp. 001105-001115 ◽  
Author(s):  
Z. Cole ◽  
B. Passmore ◽  
B. Whitaker ◽  
A. Barkley ◽  
T. McNutt ◽  
...  

The packaging design and development of an on-board bi-directional charger for the battery system of the next generation Toyota Prius plug-in hybrid electric vehicle (PHEV) will be presented in this paper. The charger implements a multichip power module (MCPM) packaging strategy. The Silicon Carbide (SiC) MCPM charger is capable of operating to temperatures in excess of 200°C and at switching frequencies in excess of 500 kHz, significantly reducing the overall size and weight of the system in comparison with Toyota's present silicon-based Prius charger. The present actively cooled Si charger is capable of delivering a peak power of 1kW at less than 90 percent efficiency, is limited to less than 50 kHz switching, and measures greater than 6.3 liters with a mass of 6.6 kg, resulting in a power density of 150 W/kg. The passively cooled SiC MCPM charger presented herein was designed to deliver a peak power of 5 kW at greater than 96% efficiency, while measuring less than 0.9 liters with a mass of 1 kg, resulting in a power density greater than 5 kW/kg. Thus, the novel SiC MCPM charger represents an increase in power density of more than 30×, a very significant power density achievement in size and weight for sensitive mobile applications such as PHEVs. This paper will discuss the overall mechanical design of the SiC MCPM charger, the finite-element modeling and analysis of thermal and stress considerations, characterization and parasitic analysis of the MCPM, and the development of high temperature solutions for SiC devices.


2012 ◽  
Vol 717-720 ◽  
pp. 1147-1150
Author(s):  
Nii Adotei Parker-Allotey ◽  
Dean P. Hamilton ◽  
Olayiwola Alatise ◽  
Michael R. Jennings ◽  
Philip A. Mawby ◽  
...  

This paper will demonstrate how the newer Silicon Carbide material semiconductor power devices can contribute to carbon emissions reduction and the speed of adoption of electric vehicles, including hybrids, by enabling significant increases in the driving range. Two IGBT inverter leg modules of identical power rating have been manufactured and tested. One module has silicon-carbide (SiC) Schottky diodes as anti-parallel diodes and the other silicon PiN diodes. The power modules have been tested and demonstrate the superior electrothermal performance of the SiC Schottky diode over the Si PiN diode leading to a reduction in the power module switching losses.


Sign in / Sign up

Export Citation Format

Share Document