Cost effective 3D Glass Microfabrication for Advanced Packaging Applications

2012 ◽  
Vol 2012 (1) ◽  
pp. 000781-000784
Author(s):  
Jeb H. Flemming ◽  
Kevin Dunn ◽  
James Gouker ◽  
Carrie Schmidt ◽  
Roger Cook

Interposer technologies are gathering more importance in IC packaging as the industry continues miniaturization trends in microfabrication nodes and IC packaging to meet design and utility needs in consumer electronics. Furthermore, IC packaging is widely seen as a method to prolong Moore's law. Historically, silicon has been the material of interest for interposer materials given its prevalence in IC production, but it presents many technical and costs hurdles. In contrast, glass interposer technology presents a low cost alternative, yet attempts at producing advanced through glass vias (TGVs) arrays using traditional methods, such as laser ablation, have inherent process flaws, such as reduced interposer mechanical strength and debris sputtering among others. In this extended abstract we present 3D Glass Solutions' efforts in using our proprietary APEX™ Glass ceramic to create various interposer technologies. This extended abstract will present on the production of large arrays of 10 micron diameter TGVs, with 20 micron center-to-center pitch, in 100 micron thick APEX™ Glass ceramic and the comparisons of wet etching of APEX™ Glass vs. laser ablation.

2011 ◽  
Vol 2011 (DPC) ◽  
pp. 001269-001290
Author(s):  
Jeb H. Flemming ◽  
Kevin Dunn ◽  
James Gouker ◽  
Carrie Schmidt

The most singular focus of the electronics industry during the last 50 years has been to miniaturize ICs by miniaturization of transistors and on-chip interconnections. Two major problems are foreseen with this approach; electrical leakage and lack of improved electrical performance beyond 16nm. As a result, industry is transitioning from the current SOC-based approach to a through-silicon-via (TSV) based 3D IC-stacked approach. However, a major challenge remains; these 3D ICs need to be interconnected to other ICs with a much higher number of I/Os than are available with current ceramic or organic interposers. While silicon interposers currently in development can provide these high I/Os, they cannot do so at low enough cost. In this talk, we will present on our efforts in glass interposers fabrication. Glass interposers possess many advantages over silicon interposers including: cost, production time, and scale. Life MicroFab's APEX™ Glass ceramic is a photo-sensitive material used to create high density arrays of through glass vias (TGVs) using three simple processing steps: exposure, baking, and etching. To date, we have been successful in producing large arrays of 12 micron diameter TGVs, with 14 micron center-to-center pitchs, in 125 micron thick APEX™ Glass ceramic. We will present (1) on our efforts producing high aspect ratio TGVs in thin (500-250 micron) and ultra thin (250-75 micron) APEX™ Glass ceramic wafers, (2) maximum TGV aspect ratios, and (3) TGV fidelity and limits of manufacturing.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000791-000810
Author(s):  
Jeb Flemming ◽  
Roger Cook ◽  
Kevin Dunn ◽  
James Gouker

Today's packaging has become the limiting element in system cost and performance for IC development. Assembly and packaging technologies have become primary differentiators for manufactures of consumer electronics and the main enabler of small IC product development. Traditional packaging approaches to address the needs in these “High Density Portable” devices, including FR4, liquid crystal polymers, and Low Temperature Co-Fire Ceramics, are running into fundamental limits in packaging layer thinness, high density interconnects (HDI) size and density, and do not present solutions to in-package thermal management, and optical waveguiding. In this talk, 3D Glass Solutions will present on our efforts to create advanced microelectronic packing solutions using our APEX™ Glass ceramic which offers a single material capable of being simultaneously used for ultra-HDI through glass vias (TGVs), optical waveguiding, and in-package microfluidic cooling. In this talk we will discuss our latest results in wafer-level microfabrication of packaging solutions. We will present on our efforts for creating copper filled vias, surface metallization, and passivation. Furthermore, we will present our efforts in exploring this material to produce (1) ultra-HDI glass interposers, with TGVs as small as 12 microns, with 14 micron center –to-center, (2) advanced RF packages with unique surface architectures designed to minimize signal loss, and (3) creating wave guiding structures in HDI packages.


2016 ◽  
Vol 2016 (DPC) ◽  
pp. 000367-000396
Author(s):  
Habib Hichri

The continuous trend of the miniaturization, increasing performance and mobility of electronic devices drive the requirements of the chip itself but also its package type. The current integration process based on photolithography will be reaching the limit to develop cost effective and innovative package designs that meet the market requirements. In support of this technology trend and to address the industry problems Excimer laser ablation has been adopted in the semiconductor packaging industry and is now available as disruptive patterning technology. The complementary technology offers the promise of further reductions in manufacturing costs as well as enhancements in chip or package performance. Excimer laser ablation is a direct etching process that uses the advantage of the Excimer laser source to emit high energy pulses at short wavelengths. The combination of the Excimer laser source and dedicated projection optics ensures the capability of high resolution imaging. With this type of patterning technology the industry gets access to materials that do not require photo patterning. The paper proposes a new process based on the front end of line dual damascene integration flow for building multilayer RDL for Advanced Packaging using Excimer laser ablation. The new process uses Excimer laser ablation as the critical method to integrate via and RDL traces in one patterning process step, followed by seed layer deposition, plating and standard planarization processes. In this presentation, we will explain in detail the new proposed integration flow and further demonstrate its technical robustness for the chip interconnect combined with its commercial benefits to users. We will also cover the capability of this Excimer laser process to extend the material selection to non-photo materials.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000199-000201
Author(s):  
Jeb H. Flemming ◽  
Kevin Dunn ◽  
James Gouker ◽  
Carrie Schmidt ◽  
Colin Buckley

The most singular focus of the electronics industry during the last 50 years has been to miniaturize ICs by miniaturization of transistors and on-chip interconnections. Two major problems are foreseen with this approach; (1) electrical leakage and (2) the lack of improved electrical performance beyond 16nm. As a result, the industry is transitioning from the current SOC-based approach to a through-silicon-via (TSV) based 3D IC-stacked approach. However, a major challenge remains; these 3D ICs need to be interconnected to other ICs with a much higher number of I/Os than are available with current ceramic or organic interposers. While silicon interposers currently in development can provide these high I/Os, they cannot do so at low enough cost. In this extended abstract, 3D Glass Solutions, a division of Life BioScience, Inc., presents our efforts in glass interposer microfabrication. Glass interposers possess many advantages over silicon interposers including: cost, production time, and scale. 3D Glass Solution’s APEX™ Glass ceramic is a photo-sensitive material used to create high density arrays of through glass vias (TGVs) using three simple processing steps: exposure, baking, and etching. To date, we have been successful in producing large arrays of 12 micron diameter TGVs, with 14 micron center-to-center pitch, in 125 micron thick APEX™ Glass ceramic. This extended abstract covers (1) on our efforts producing high aspect ratio TGVs in ultra thin (75–250 micron) APEX™ Glass ceramic wafers, (2) maximum TGV aspect ratios, and (3) TGV fidelity and limits of manufacturing.


Author(s):  
Tanwi Singh ◽  
Anshuman Sinha

The major risk associated with low platelet count in pregnancy is the increased risk of bleeding during the childbirth or post that. There is an increased blood supply to the uterus during pregnancy and the surgical procedure requires cutting of major blood vessels. Women with thrombocytopenia are at increased risk of losing excessive blood. The risk is more in case of caesarean delivery as compared to vaginal delivery. Hence based on above findings the present study was planned for Assessment of the Platelet Count in the Pregnant Women in IGIMS, Patna, Bihar. The present study was planned in Department of Pathology, Indira Gandhi Institute of Medical Science, Patna, Bihar, India. The present study was planned from duration of January 2019 to June 2019. In the present study 200 pregnant females samples received for the platelet estimation were enrolled in the present study. Clinically platelet indices can be a useful screening test for early identification of preeclampsia and eclampsia. Also platelet indices can assess the prognosis of this disease in pregnant women and can be used as an effective prognostic marker because it correlates with severity of the disease. Platelet count is a simple, low cost, and rapid routine screening test. Hence the data generated from the present study concludes that platelet count can be used as a simple and cost effective tool to monitor the progression of preeclampsia, thereby preventing complications to develop during the gestational period. Keywords: Platelet Count, Pregnant Women, IGIMS, Patna, Bihar, etc.


2019 ◽  
Vol 2019 (4) ◽  
pp. 7-22
Author(s):  
Georges Bridel ◽  
Zdobyslaw Goraj ◽  
Lukasz Kiszkowiak ◽  
Jean-Georges Brévot ◽  
Jean-Pierre Devaux ◽  
...  

Abstract Advanced jet training still relies on old concepts and solutions that are no longer efficient when considering the current and forthcoming changes in air combat. The cost of those old solutions to develop and maintain combat pilot skills are important, adding even more constraints to the training limitations. The requirement of having a trainer aircraft able to perform also light combat aircraft operational mission is adding unnecessary complexity and cost without any real operational advantages to air combat mission training. Thanks to emerging technologies, the JANUS project will study the feasibility of a brand-new concept of agile manoeuvrable training aircraft and an integrated training system, able to provide a live, virtual and constructive environment. The JANUS concept is based on a lightweight, low-cost, high energy aircraft associated to a ground based Integrated Training System providing simulated and emulated signals, simulated and real opponents, combined with real-time feedback on pilot’s physiological characteristics: traditionally embedded sensors are replaced with emulated signals, simulated opponents are proposed to the pilot, enabling out of sight engagement. JANUS is also providing new cost effective and more realistic solutions for “Red air aircraft” missions, organised in so-called “Aggressor Squadrons”.


2019 ◽  
Vol 9 (2) ◽  
pp. 157-160
Author(s):  
Ali Hasani

Background: Laser ablation method has high-yield and pure SWCNHs. On the other hand, arc discharge methods have low-cost production of SWCNHs. However, these techniques have more desirable features, they need special expertness to use high power laser or high current discharge that either of them produces very high temperature. As for the researches, the temperatures of these techniques are higher than 4727°C to vaporize the graphite. So, to become aware of the advantages of SWCNHs, it is necessary to find a new way to synthesize SWCNHs at a lower temperature. In other words, reaction field can be expandable at a moderate temperature. This paper reports a new way to synthesize SWCNHs at an extremely reduced temperature. Methods: According to this study, the role of N2 is the protection of the copper holder supporting the graphite rod by increasing heat transfer from the holder. After the current of 70 A was supplied to the system, the temperature of graphite rod was raised to 1600°C. It is obvious that this temperature is somehow higher than the melting point of palladium, 1555°C, and much lower than graphite melting point, 3497°C. Results: Based on the results, there are transitional precursors simultaneous with the SWCNHs. This composition can be created by distortion of the primary SWCNTs at the higher temperature. Subsequently, each SWCNTs have a tendency to be broken into individual horns. With increasing the concentration of the free horns, bud-like SWCNHs can be produced. Moreover, there are individual horns almost separated from the mass of single wall carbon nanohorns. This structure is not common in SWCNHs synthesized by the usual method such as arc discharge or laser ablation. Through these regular techniques, SWCNHs are synthesized as cumulative particles with diameters about 30-150 nm. Conclusion: A simple heating is needed for SWCNTs transformation to SWCNHs with the presence of palladium as catalyst. The well-thought-out mechanism for this transformation is that SWCNTs were initially changed to highly curled shape, and after that were formed into small independent horns. The other rout to synthesize SWCNHs is the pyrolysis of palm olein at 950°C with the assistance of zinc nitrate and ferrocene. Palm olein was used as a promising, bio-renewable and inexpensive carbon source for the production of carbon nanohorns.


2018 ◽  
Vol 32 (2) ◽  
pp. 103-119
Author(s):  
Colleen M. Boland ◽  
Chris E. Hogan ◽  
Marilyn F. Johnson

SYNOPSIS Mandatory existence disclosure rules require an organization to disclose a policy's existence, but not its content. We examine policy adoption frequencies in the year immediately after the IRS required mandatory existence disclosure by nonprofits of various governance policies. We also examine adoption frequencies in the year of the subsequent change from mandatory existence disclosure to a disclose-and-explain regime that required supplemental disclosures about the content and implementation of conflict of interest policies. Our results suggest that in areas where there is unclear regulatory authority, mandatory existence disclosure is an effective and low cost regulatory device for encouraging the adoption of policies desired by regulators, provided those policies are cost-effective for regulated firms to implement. In addition, we find that disclose-and-explain regulatory regimes provide stronger incentives for policy adoption than do mandatory existence disclosure regimes and also discourage “check the box” behavior. Future research should examine the impact of mandatory existence disclosure rules in the year that the regulation is implemented. Data Availability: Data are available from sources cited in the text.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie

Abstract This paper presents an overview of the general chemical principles underlying the structures, synthesis and technical performance of azo pigments, the dominant chemical class of industrial organic pigments in the yellow, orange, and red shade areas, both numerically and in terms of tonnage manufactured. A description of the most significant historical features in this group of pigments is provided, starting from the discovery of the chemistry on which azo colorants are based by Griess in the mid-nineteenth century, through the commercial introduction of the most important classical azo pigments in the early twentieth century, including products known as the Hansa Yellows, β-naphthol reds, including metal salt pigments, and the diarylide yellows and oranges, to the development in the 1950s and 1960s of two classes of azo pigments that exhibit high performance, disazo condensation pigments and benzimidazolone-based azo pigments. A feature that complicates the description of the chemical structures of azo pigments is that they exist in the solid state as the ketohydrazone rather than the hydroxyazo form, in which they have been traditionally been illustrated. Numerous structural studies conducted over the years on an extensive range of azo pigments have demonstrated this feature. In this text, they are referred to throughout as azo (hydrazone) pigments. Since a common synthetic procedure is used in the manufacture of virtually all azo (hydrazone) pigments, this is discussed in some detail, including practical aspects. The procedure brings together two organic components as the fundamental starting materials, a diazo component and a coupling component. An important reason for the dominance of azo (hydrazone) pigments is that they are highly cost-effective. The syntheses generally involve low cost, commodity organic starting materials and are carried out in water as the reaction solvent, which offers obvious economic and environmental advantages. The versatility of the approach means that an immense number of products may be prepared, so that they have been adapted structurally to meet the requirements of many applications. On an industrial scale, the processes are straightforward, making use of simple, multi-purpose chemical plant. Azo pigments may be produced in virtually quantitative yields and the processes are carried out at or below ambient temperatures, thus presenting low energy requirements. Finally, provided that careful control of the reaction conditions is maintained, azo pigments may be prepared directly by an aqueous precipitation process that can optimise physical form, with control of particle size distribution, crystalline structure, and surface character. The applications of azo pigments are outlined, with more detail reserved for subsequent papers on individual products.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Sign in / Sign up

Export Citation Format

Share Document