scholarly journals Feed legumes for truly sustainable crop-animal systems

2017 ◽  
Vol 12 (2) ◽  
Author(s):  
Paolo Annicchiarico

Legume cultivation has sharply decreased in Italy during the last 50 years. Lucerne remains widely grown (with about 12% of its area devoted to dehydration), whereas soybean is definitely the most-grown grain legume. Poor legume cropping is mainly due to the gap in yielding ability with major cereals, which has widened up in time according to statistical data. Lucerne displays definitely higher crude protein yield and somewhat lower economic gap with benchmark cereals than feed grain legumes. Pea because of high feed energy production per unit area and rate of genetic progress, and white lupin because of high protein yield per unit area, are particularly interesting for Italian rain-fed environments. Greater legume cultivation in Europe is urged by the need for reducing energy and green-house gas emissions and excessive and unbalanced global N flows through greater symbiotic N fixation and more integrated crop-animal production, as well as to cope with ongoing and perspective raising prices of feed proteins and N fertilisers and insecurity of feed protein supplies. The transition towards greater legume cultivation requires focused research effort, comprehensive stakeholder cooperation and fair economic compensation for legume environmental services, with a key role for genetic improvement dragged by public breeding or pre-breeding. New opportunities for yield improvement arise from the ongoing development of cost-efficient genome-enabled selection procedures, enhanced adaptation to specific cropping conditions via ecophysiological and evolutionary-based approaches, and more thorough exploitation of global genetic resources.

2021 ◽  
Vol 13 (29) ◽  
pp. 77-84
Author(s):  
Sofia Petrova ◽  
◽  
Tsvetelina Stoilova ◽  
Petar Chavdarov ◽  
◽  
...  

Grain legumes have positive impact on global food and nutrition security. Grain legume collections, maintained at the Institute of Plant Genetic Resources - Sadovo are represented by 10 botanical genera. The aim of the current study is to evaluate the phenotypic diversity of local accessions from five grain legume collections (Vicia faba, Pisum sp., Lathyrus sp., Cicer arietinum and Lupinus sp.) and to select the best ones with potential to be used under different agro-climatic conditions. The assessment of morphological and agro-biological traits was performed according to the International Descriptor for each crop. The structural elements of the yield, such as the number of pods and the mass of pods and grains per plant, grains size, etc. have a significant impact on the productivity of the grain legumes. The variability of agronomic and biological traits has shown high genetic diversity in evaluated grain legume collections and increased the possibilities for their use in the breeding-improvement activity. Based on phenotyping assessment several grain legume accessions were distinguished as starting breeding materials: from pea collection - two cultivars and two local populations; from chickpea collection - four populations; from faba bean collection – eight populations; from bitter vetch collection – two accessions; from grass pea collection - six genotypes; from white lupin collection – two accessions. The study of the materials from the collections was focused on the interests of researchers, breeders and producers.


2016 ◽  
Vol 54 (1) ◽  
pp. 66-82 ◽  
Author(s):  
SILVIA PAMPANA ◽  
ALESSANDRO MASONI ◽  
MARCO MARIOTTI ◽  
LAURA ERCOLI ◽  
IDUNA ARDUINI

SUMMARYLegume crops are not usually fertilised with mineral N. However, there are at least two agronomic cases when it would be advantageous to distribute N fertiliser to legume crops: at sowing, before the onset of nodule functioning, and when a legume is intercropped with a cereal. We highlight the impact of various levels of fertiliser nitrogen on grain yield, nodulation capacity and biological nitrogen fixation in the four most common grain legume crops grown in central Italy. Chickpea (Cicer arietinum L.), field bean (Vicia faba L. var. minor), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) were grown in soil inside growth boxes for two cropping seasons with five nitrogen fertilisation rates: 0, 40, 80, 120 and 160 kg ha−1. In both years, experimental treatments (five crops and five levels of N) were arranged in a randomised block design. We found that unfertilised plants overall yielded grain, total biomass and nitrogen at a similar level to plants supplied with 80–120 kg ha−1 of mineral nitrogen. However, above those N rates, the production of chickpea, pea and white lupin decreased, thus indicating that the high supply of N fertiliser decreased the level of N2 fixed to such an extent that the full N2-fixing potential might not be achieved. In all four grain legumes, the amount of N2 fixed was positively related to nodule biomass, which was inversely related to the rate of the N fertiliser applied. The four grain legumes studied responded differently to N fertilisation: in white lupin and chickpea, the amount of nitrogen derived from N2 fixation linearly decreased with increasing N supply as a result of a reduction in nodulation and N2 fixed per unit mass of nodules. Conversely, in field bean and pea, the decrease in N2 fixation was only due to a reduction in nodule biomass since nodule fixation activity increased with N supply. Our results suggest that the legume species and the N rate are critical factors in determining symbiotic N2-fixation responses to N fertilisation.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2374
Author(s):  
Marium Khatun ◽  
Sumi Sarkar ◽  
Farzana Mustafa Era ◽  
A. K. M. Mominul Islam ◽  
Md. Parvez Anwar ◽  
...  

Grain legumes are important sources of proteins, essential micronutrients and vitamins and for human nutrition. Climate change, including drought, is a severe threat to grain legume production throughout the world. In this review, the morpho-physiological, physio-biochemical and molecular levels of drought stress in legumes are described. Moreover, different tolerance mechanisms, such as the morphological, physio-biochemical and molecular mechanisms of legumes, are also reviewed. Moreover, various management approaches for mitigating the drought stress effects in grain legumes are assessed. Reduced leaf area, shoot and root growth, chlorophyll content, stomatal conductance, CO2 influx, nutrient uptake and translocation, and water-use efficiency (WUE) ultimately affect legume yields. The yield loss of grain legumes varies from species to species, even variety to variety within a species, depending upon the severity of drought stress and several other factors, such as phenology, soil textures and agro-climatic conditions. Closure of stomata leads to an increase in leaf temperature by reducing the transpiration rate, and, so, the legume plant faces another stress under drought stress. The biosynthesis of reactive oxygen species (ROS) is the most detrimental effect of drought stress. Legumes can adapt to the drought stress by changing their morphology, physiology and molecular mechanism. Improved root system architecture (RSA), reduced number and size of leaves, stress-induced phytohormone, stomatal closure, antioxidant defense system, solute accumulation (e.g., proline) and altered gene expression play a crucial role in drought tolerance. Several agronomic, breeding both conventional and molecular, biotechnological approaches are used as management practices for developing a drought-tolerant legume without affecting crop yield. Exogenous application of plant-growth regulators (PGRs), osmoprotectants and inoculation by Rhizobacteria and arbuscular mycorrhizal fungi promotes drought tolerance in legumes. Genome-wide association studies (GWASs), genomic selection (GS), marker-assisted selection (MAS), OMICS-based technology and CRISPR/Cas9 make the breeding work easy and save time in the developmental cycle to get resistant legumes. Several drought-resistant grain legumes, such as the chickpea, faba bean, common bean and pigeon pea, were developed by different institutions. Drought-tolerant transgenic legumes, for example, chickpeas, are developed by introgressing desired genes through breeding and biotechnological approaches. Several quantitative trait loci (QTLs), candidate genes occupying drought-tolerant traits, are identified from a variety of grain legumes, but not all are under proper implementation. Hence, more research should be conducted to improve the drought-tolerant traits of grain legumes for avoiding losses during drought.


Author(s):  
B.L. Jat ◽  
P. Pagaria ◽  
A.S. Jat ◽  
H.D. Choudhary ◽  
T. Khan ◽  
...  

The most important factor that affects the crop production in terms of nutritional content of foliar plants is the global climate change. Herbivore’s growth, development, survival and geographical distribution all are determined by elevated CO2 and temperature. The interactions between herbivores and plants have changed due to increasing level of CO2 and temperature. The effect of high CO2 and temperature on grain legume plant which change in to plant physiology (e.g., nutritional content, foliage biomass) and how it change in herbivory metabolism rate and food consumption rate. Plant injury is determined by two factors viz. resistance and tolerance and both are influenced by greater CO2 and temperature. Legumes are an important source of food and feed in the form of proteins and also improve the soil environment. The repercussions of the abiotic factors mentioned above needs discussion among the scientific community. We may able to limit the negative repercussions of stated factors in future breeding projects by harnessing the practical favourable impacts and by including such influences of elevated CO2 and temperature on pulses productivity. The extensive research is necessary to overcome the negative effects of high CO2 and temperature on insect-plant interaction.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 201
Author(s):  
Marcal Gusmao ◽  
Delfim Da Costa ◽  
Angelo Da Costa Freitas ◽  
Kadambot H. M. Siddique ◽  
Robert Williams

Growth, development and yield of three-grain legumes (mung bean [F1], soybean [F2] and grass pea [F3]) following rice crop to enhance grain production was studied in a paddy field in the northern Timor-Leste. A split plot design was used with three water treatments (well-watered [W0], water withheld at flowering [W1] and after germination [W2]). Interaction between water treatments and species on dry matter production (p < 0.001) and seed yield (p = 0.005) was observed. In control, the highest seed yield was F1 (1.2 t/ha) followed by F2 (1.1 t/ha) and F3 (0.4 t/ha) respectively. There was a steady reduction in seed yield in F1 from W0 to W2, but almost fifty percent reduction in F2 under W1 and W2 compared to W0. F3 had little difference between water treatments. The W1 and W2 reduced number of filled pods per plant in all species compared to control (W0). Between the species, F3 had the highest filled pods per plant followed by F2 and F3. The W1 and W2 reduced seeds per pod of F1; however, it did not effect F2 and F3. There were interactions between water treatment and species on 100 seeds weight. The heaviest seeds were in F2 in the control plants, but in the F2 drought treatments (W1 and W2) seed weight were less than F3. The lowest seed weight was in F1, but there was no impact of the terminal droughts on its seed weight.


2005 ◽  
Vol 143 (2-3) ◽  
pp. 183-192 ◽  
Author(s):  
F. COSTE ◽  
M. P. RAVENEAU ◽  
Y. CROZAT

A non-destructive indicator of seed water content could significantly help crop scientists with assessment of the effects of environmental conditions during drying on grain qualities or on seed physiological quality. This is particularly important for grain legumes which simultaneously bear pods of different ages. Visual assessment of pod colour has so far been used to date grain legume stages, but now colour can be easily and accurately measured with a portable spectrophotometer. Relationships between the spectrophotometer measurements and the pod and seed water contents were tested in various climatic contexts (3 years: 2000, 2001, 2002; field or greenhouse, two or three sowing dates) for two bean cultivars (Booster and Calypso) and also for one pea cultivar (Baccara) in 2003 near Angers, France. Among the different spectrophotometer measurements, hue angle (h) clearly shows the transition from green (h=180 °) to yellow (h=90 °) and then to red (h=0 °). In each context, h and seed water content (SWC) relationships showed the same pattern of three linear phases: first a steady state; then a sharp decrease from green (h=106–108 °) to yellow (h=85–93 °) just before the end of the seed filling stage for Booster or between the end of the seed filling phase and the beginning of seed drying for Calypso and pea; finally, a slow decrease from yellow to ochre (h=75–78 °) during seed drying. For each bean cultivar, the parameters of the linear relationships showed no differences between maturation conditions. Therefore, 6 h classes matching six SWC classes could be defined over a wide range of SWC between 0·56 and 0·2 g/g for Booster. However for Calypso and pea, only 3 h classes could be defined because of the tight relationships between h and SWC during the end of seed drying, which can be explained by pod walls drying faster than seeds. Hence, spectrophotometer measurements, if calibrated for a given cultivar of a species, could now be used to select pods with seeds of the same water content and therefore to study environmental effects on quality criteria either in controlled conditions or in the field.


2012 ◽  
Vol 151 (3) ◽  
pp. 303-321 ◽  
Author(s):  
P. PELTONEN-SAINIO ◽  
A. HANNUKKALA ◽  
E. HUUSELA-VEISTOLA ◽  
L. VOUTILA ◽  
J. NIEMI ◽  
...  

SUMMARYCrop-based protein self-sufficiency in Finland is low. Cereals dominate the field cropping systems in areas that are also favourable for legumes and rapeseed. The present paper estimated the realistic potential for expanding protein crop production taking account of climatic conditions and constraints, crop rotation requirements, field sizes, soil types and likelihood for compacted soils in different regions. The potential for current expansion was estimated by considering climate change scenarios for 2025 and 2055. By using actual regional mean yields for the 2000s, without expecting any yield increase during the expansion period (due to higher risks of pests and diseases), potential production volumes were estimated. Since rapeseed, unlike grain legumes, is a not a true minor crop, its expansion potential is currently limited. Thus, most potential is from the introduction of legumes into cropping systems. The current 100000 ha of protein crops could be doubled, and areas under cultivation could reach 350000 and 390000 ha as a result of climate warming by 2025 and 2055, respectively. Such increases result mainly from the longer growing seasons projected for the northern cropping regions of Finland. Self-sufficiency in rapeseed could soon increase from 0·25 to 0·32, and then to 0·50 and 0·60 by 2025 and 2055, respectively. If legume production expands according to its potential, it could replace 0·50–0·60 of currently imported soybean meal, and by 2025 it could replace it completely. Replacement of soybean meal is suitable for ruminants, but it presents some problems for pig production, and is particularly challenging for poultry.


2019 ◽  
Vol 115 (3) ◽  
pp. 391-405 ◽  
Author(s):  
Gabriele Gollner ◽  
Walter Starz ◽  
Jürgen K. Friedel

Abstract Pea (Pisum sativum L.) is a valuable grain legume in organic crop rotations. Pea rotations provide nitrogen (N) to the system through N fixation and produce animal feed or human food. Because of the high susceptibility of pea to pests, diseases and weeds and due to low profitability, especially in organic systems, pea cropping intensity decreased in the last 15 years in Austria. Therefore, it is important to find strategies for improving pea cropping systems in organic systems, by increasing yields and providing a positive N balance. The objective of this study was to compare pea genotypes of selected field and fodder pea in pure and mixed pea stands for biomass performance, biological N fixation and pre-crop effect under dry site conditions in a 2-year study in Eastern Austria. Pea N fixation was estimated using the extended N-difference method, with oat as the reference crop. The highest grain yield was found for the leafed field pea, with 2.5 Mg dry mass (DM) ha−1, followed by the semi-leafless field pea with 2.1 Mg DM ha−1 and the pea-mixtures with 2.2 Mg DM ha−1. The field pea cultivars yielded more than the fodder pea cultivars with 1.6 Mg DM ha−1. The average N concentration in pea grains was 3.6 mg g−1. The fodder pea type contained 3.8 mg g−1, significantly more N (p < 0.0001) than the semi-leafless and leafed field pea. Pea N fixation ranged from 53 to 75 kg N ha−1, corresponding to 42–50% of N derived from the atmosphere (% Ndfa). No differences in N fixation were found among cultivars, types and field/fodder pea. The fodder pea exported less N from the field because of their lower grain yield. Therefore, the N balance (N-input − N-output) of fodder pea was positive, with + 3.4 kg N ha−1 compared to the negative N balance of − 0.6 to − 3.6 kg N ha−1 for the leafed field pea types. These differences were not reflected in the following winter wheat crop, where the DM grain yield was 3.6–3.9 Mg ha−1 with no differences between cultivars and ideotypes. The results demonstrate that leafed field pea could have a sufficient grain yield and fodder pea could produce high N concentration in the grains. Because there are no differences regarding the effect of pea types on the yield of the following crop, it can be concluded that all tested pea types are suitable for successful organic pea production under dry site conditions. While there were no negative effects on the subsequent crop, the different ideotypes and mixtures may be selected based on different management goals.


1986 ◽  
Vol 26 (3) ◽  
pp. 339 ◽  
Author(s):  
J Harbison ◽  
BD Hall ◽  
RGH Nielsen ◽  
WM Strong

Performances of 18 winter cereal, grain legume and oilseed crops were compared on the Darling Downs in 1976 using cultural practices appropriate for each. All crops, except for faba bean, which had a lower population than desired, established satisfactorily. The season was characterised by twice the average number (55) of heavy frosts, although only safflower appeared to be adversely affected. Heavy rain around maturity caused lodging of the prostrate crops lathyrus and field pea, some pod shattering of most grain legumes, and delays in machine-harvest, due to waterlogging, of almost all crops. Barley and canary seed were affected by powdery mildew during August and early September but recovered after rain in mid-September. Later rainfall promoted the diseases Alternaria carthami in safflower and Puccinia sp. in vetch, reducing grain yields in both crops. Except for chickpea, all grain legumes nodulated effectively. Lathyrus produced more larger ( >3 mm diameter) nodules than any other grain legume while lentil and vetch had many small (<2 mm) nodules. At floral initiation, more herbage DM was produced by triticale and oats than all other crops except barley and fieldpea. The most productive grain legumes were fieldpea, lathyrus and lentil. All oilseeds produced similar quantities of herbage DM, which were greater than those for grain legumes but less than those for cereals. Nitrogen concentration in herbage increased in the order: cereals < oilseeds <grain legumes. Machine-harvested grain yields of cereals were generally higher than those of oilseeds or grain legumes but delayed harvest caused large grain losses for many oilseeds and grain legumes. Pod shattering and crop lodging caused large yield losses in rapeseed and field peas, respectively. Lupins (cv. Ultra) produced more harvestable grain (1.6 t/ha) than any other grain legume, rapeseed, safflower or canary seed. An even higher grain yield (3.9 t/ha) was measured at a nearby site on an acid soil. Of the other grain legumes, lentil and lathyrus appear to be poorly adapted for this region while faba bean and vetch appear moderately well suited.


1988 ◽  
Vol 68 (3) ◽  
pp. 553-562 ◽  
Author(s):  
E. BREMER ◽  
D. A. RENNIE ◽  
R. J. RENNIE

Annual grain legume production has increased substantially in Western Canada over the past 15 yr but more information on the N2-fixing potential of these crops is needed. 15N isotope dilution was used to determine N2 fixation of several grain legumes under dryland field conditions in Saskatchewan. Two cultivars of lentil (Lens culinaris Medik), pea (Pisum sativum L.), and fababean (Vicia faba L.) were grown at five locations in both 1984 and 1985, with all major soil zones represented by at least one location in each year. Drought stress was moderate to severe at all sites in 1984 and at sites in the Brown and Dark Brown soil zones in 1985. Barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) were nearly identical as non-N2-fixing reference crops, but their validity as reference crops for the grain legumes included in this study was not tested. Indigenous rhizobia were incapable of supporting adequate levels of N2 fixation at most sites in this study. Inoculation increased total dry matter, total N and N2 fixation of all grain legume cultivars tested. Proportion of N assimilated from the atmosphere declined with increasing soil nitrate levels and increasing drought stress. Annual rates of N2 fixation were as high as 75, 105 and 160 kg N ha−1 for lentil, pea and fababean, respectively, at sites in the Gray and Gray-Black soil zones in 1985, but declined by an average of 5.3, 7.6 and 10.5 kg N ha−1, respectively, for every cm reduction in moisture use. Maximum rates of N2 fixation in 1984 were about 80 kg ha−1. Fababean fixed the most N2 under wetter conditions, while pea and lentil fixed the most under drought stressed conditions. Key words: 15N isotope dilution, dinitrogen fixation, lentil, pea, fababean, drought stress


Sign in / Sign up

Export Citation Format

Share Document