scholarly journals Effect of turbidity on ultraviolet disinfection of domestic wastewater for agricultural reuse

Author(s):  
Diego Fernando Atoche Garay ◽  
Lisiana Crivelenti Voltolini ◽  
Reinaldo Gaspar Bastos ◽  
Claudinei Fonseca Souza

Water treatment and reuse are fundamental because of the increasing demand for freshwater, especially in agriculture. Accordingly, this study evaluated the effects of turbidity of wastewater processed at the Effluent Treatment Station (ETE) of the UFSCar/Araras and of UV dose on microbial inactivation. The ETE treats up to 2000 L of wastewater daily from toilets and a university restaurant and has five components (grease box, septic tank, microalgae tank, upflow anaerobic filter, and wetlands). Pretreated effluents were used in the experiments, and sampling sites consisted of inspection boxes located after the wetlands. Sample collection, inspection, preservation, and analyses were performed according to standard methods. Sample turbidity was adjusted to 5, 50, 100, 200, and 300 nephelometric turbidity units (NTU), and UV doses of 7.2–28.8 mWs cm-2 were used. A 5 x 5 factorial design (five turbidity levels and five radiation doses) was used, totaling 25 treatments. Each treatment was performed in triplicate. The data were submitted to analysis of variance and Tukey’s test. The results showed that the increase in turbidity significantly decreased disinfection efficiency in samples with turbidity levels higher than 50 NTU. The microbial inactivation coefficients obtained here can be extrapolated to disinfection of wastewater with turbidity up to 300 NTU to eliminate thermotolerant coliforms. The UV sterilizer is feasible for wastewater treatment and its reuse in agriculture. Keywords: domestic effluent, sustainability, ultraviolet radiation, water reuse.

2001 ◽  
Vol 44 (6) ◽  
pp. 1-10 ◽  
Author(s):  
M. Anda ◽  
K. Mathew ◽  
G. Ho

In the past sewage ponding in indigenous settlements was commonplace as a result of overcrowding combined with inappropriate septic tank and leach drain design, installation and operation. The response over the past 10 years has been to develop reticulated sewerage systems to lagoons when the funds become available. These are often successful in terms of operation, improved public health and low maintenance but are expensive and wasteful of limited water supplies. Evapotranspiration (ET) is an effective method for on-site domestic effluent disposal in areas of Western Australia with soils of low permeability. Evapotranspiration systems have been established in a number of communities both for research/demonstration and as specified by architects. The systems usually follow two septic tanks for the disposal of all domestic effluent. A case study will be presented for a remote indigenous community where the ET systems installed for greywater only have been monitored over the last two years since installation. The use of evapotranspiration has enabled reuse of effluent for successful examples of revegetation and food production and points to the need for a holistic approach to design and service delivery in these communities that includes a total environmental management plan.


2021 ◽  
Vol 13 (18) ◽  
pp. 10461
Author(s):  
Yasmin Saif ◽  
Mahwish Ali ◽  
Ian M. Jones ◽  
Safia Ahmed

The present study explored the efficiency of a four-chambered anaerobic baffled reactor (ABR) as a cost-effective and sustainable method of organic pollutant and pathogen removal from domestic wastewater, under a range of environmental conditions. An ABR with a circular additional filter at the outlet pipe was constructed to treat wastewater from a residential colony of 108 households with an average inflow of 110 m3/day and a nominal hydraulic retention time (HRT) of 20 h. Analysis of the chemical oxygen demand (COD), total nitrogen, sulfate and phosphate load, and total coliform removal for 2 years of operation, 2015 and 2017, showed a COD of 46%, sulfate load of 28%, phosphate load of 51% and total nitrogen of 28% for 2015, compared to a COD of 48%, sulfate load of 44%, phosphate load of 58% and total nitrogen of 31% for 2017. The lack of a significant effect of sludge removal suggested a stable process. The overall efficiency of the ABR increased in the summer, including for pathogen removal, which was significantly higher during the summer months of both years. Overall, the ABR was found to be able to consistently treat primary wastewater, although tertiary effluent treatment was still required before water reuse or final discharge.


1999 ◽  
Vol 40 (3) ◽  
pp. 125-131 ◽  
Author(s):  
Luiz S. Philippi ◽  
Rejane H. R. da Costa ◽  
Pablo H. Sezerino

According to national statistical data, only 10% of the Brazilian urban population have their sewage treated. In the rural areas, where people usually treat sewage trough septic tank systems, this value is not greater than 5%. This situation, therefore, depicts a lack of basic sanitation in Brazil, which, in turn, is responsible for the utilisation of individual systems for the treatment of sewage by more than 100 million people. Generally, soils and water rivers are, no longer, the last fate for the discharged effluents. Wetland system for the treatment of domestic sewage have been employed in different situations and arrangements (combined system) always showing outstanding performances. The reasons which qualify this system for the treatment of effluents have been attributed to its low cost, easy maintenance and operation. The experiment was carried out in the Agriculture Secretary's Training Center, Santa Catarina State, responsible for servicing approximately 66 people daily, and was fed with local effluent. This work assesses the efficacy of such a kind of system, which is composed of a septic tank followed by the root zone, in the treatment of liquid effluents.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1564
Author(s):  
Sara Beck ◽  
Poonyanooch Suwan ◽  
Thusitha Rathnayeke ◽  
Thi Nguyen ◽  
Victor Huanambal-Sovero ◽  
...  

Decentralized wastewater treatment systems enable wastewater to be treated at the source for cleaner discharge into the environment, protecting public health while allowing for reuse for agricultural and other purposes. This study, conducted in Thailand, investigated a decentralized wastewater treatment system incorporating a physical and photochemical process. Domestic wastewater from a university campus and conventional septic tank effluent from a small community were filtered through a woven-fiber microfiltration (WFMF) membrane as pretreatment for ultraviolet (UV) disinfection. In domestic wastewater, WFMF reduced TSS (by 79.8%), turbidity (76.5%), COD (38.5%), and NO3 (41.4%), meeting Thailand irrigation standards for every parameter except BOD. In septic tank effluent, it did not meet Thailand irrigation standards, but reduced TSS (by 77.9%), COD (37.6%), and TKN (13.5%). Bacteria (total coliform and Escherichia coli) and viruses (MS2 bacteriophage) passing through the membrane were disinfected by flow-through UV reactors containing either a low-pressure mercury lamp or light-emitting diodes (LEDs) emitting an average peak wavelength of 276 nm. Despite challenging and variable water quality conditions (2% < UVT < 88%), disinfection was predictable across water types and flow rates for both UV sources using combined variable modeling, which enabled us to estimate log inactivation of other microorganisms. Following UV disinfection, wastewater quality met the WHO standards for unrestricted irrigation.


2021 ◽  
Vol 11 (11) ◽  
pp. 5281
Author(s):  
Marcin Spychała ◽  
Tadeusz Nawrot ◽  
Radosław Matz

The aim of the study was to verify two morphological forms (“angel hair” and “scraps”) of xylit as a trickling filter material. The study was carried out on two types of polluted media: septic tank effluent (STE) and seminatural greywater (GW). The basic wastewater quality indicators, namely, chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), ammonium nitrogen (NNH4), and total phosphorus (Ptot) were used as the indicators of treatment efficiency. Filtering columns filled with the investigated material acted as conventional trickling filters at a hydraulic load of 376–472 cm3/d during the preliminary stage, 198–245 cm3/d during stage I, and 184–223 cm3/d during stage II. The removal efficiency of the two morphological forms of xylit did not differ significantly. The average efficiencies of treatment were as follows: for COD, over 70, 80, and 85% for preliminary stage, stage I and stage II, respectively; for BOD5, 77–79% (preliminary stage); for TSS, 42% and 70% during the preliminary stage, and 88, 91, and 65% during stage I; for NNH4, 97–99% for stage I and 36–49% for stage II; for Ptot, 51–54% for stage I and 52–56% for stage II. The study demonstrated that xylit was a material highly effective in wastewater quality indicators removal, even during the initial period of its use.


1994 ◽  
Vol 29 (1) ◽  
pp. 19-38 ◽  
Author(s):  
R.N. Coleman ◽  
I.D. Gaudet

Abstract Filter columns were designed, constructed from sand, peat and coarse gravel, and their effectiveness assessed in the treatment of septic tank effluent. An initial loading rate of 4 cm/d was applied to the filter columns in either a downward or upward flow at a temperature of 10°C or 20°C. The loading rate was later increased to 8 cm/d. Filter-column plugging occurred in the downward flow treatment but not in the upward flow treatment. Fecal Coliform removal was usually greater than 95%, BOD removal was greater than 75%, and various removal levels were exhibited for other components. Microbial colonization of peat and gravel was effective as revealed by scanning electron microscopy.


2021 ◽  
Author(s):  
Aline dos Reis Souza ◽  
Mateus Pimentel de Matos ◽  
Luciene Alves Batista Siniscalchi ◽  
Ronaldo Fia

Abstract The objective of this study was to evaluate the effect of the introduction of a complementary aerobic treatment composed of a submerged aerated biological filter (SABF) with a secondary clarifier (SC), followed by horizontal subsurface flow constructed wetlands (CWs), after anaerobic units, on the ability to remove pollutants in different aeration phases (Ph1, Ph2, and Ph3) at the effluent treatment station of the Parque Francisco de Assis (PFA) dog shelter. Ph1 and Ph2 had 7 and 5 hours of daily aeration, respectively, and Ph3 had intermittent aeration every 2 hours. The phases were monitored regarding the removal efficiency of organic matter, solids, nutrients (N, P), coliforms, and detection of Giardia and Cryptosporidium. It was found that post-treatment provided greater removal efficiencies and that the aeration strategy of Ph3 showed mean efficiencies of 71% for COD removal and 77% for BOD removal, being similar or statistically higher, even with less biodegradable effluent, than those of Ph1 and Ph2. The SABF and SC removed N by nitrification and denitrification, leaving a total Kjeldahl nitrogen (TKN) concentration in the effluent of 18 mg L−1. The CW showed potential for simultaneous nitrification and denitrification (SND), in addition to solid filtration. The system did not satisfactorily remove thermotolerant coliforms (ThermC) (1 ± 0 log). PCR suggested the presence of the pathogens Giardia and Cryptosporidium in all post-treatment units in Ph1 and Ph2.


Author(s):  
Deni Rusmaya ◽  
Evi Afiatun ◽  
Muhammad Al Hadad

Babakan Village has a problem that there is still a lack of facilities for wastewater. This condition can be seen from the access to the toilets of 2436 households; only around 1506 families have access to family/ shared latrines and 625 households that meet technical requirements. For this reason, this plan is useful for increasing access and meeting community needs for domestic wastewater treatment facilities in the study area. This planning stage begins with a survey and sanitation inspection to determine 3 priority areas for handling. Determinants of this priority area use the method of scoring and weighting the risk. The weighting results put sub village 02 with a score of 2.3, sub village 05 with a score of 2.25, and RW 10 with a risk value of 2 as the priority area for planning handlers. Primary data collected will be used as a consideration for determining the technology to be applied. The technology chosen for processing is the communal septic tank for people who do not have treatment. In contrast, for the washing bath, toilet with a biofilter unit for people who do not have wastewater infrastructure.


2017 ◽  
Vol 28 (4) ◽  
pp. 477-489 ◽  
Author(s):  
Daiane Cristina de Oliveira Garcia ◽  
Liliane Lazzari Albertin ◽  
Tsunao Matsumoto

Purpose The purpose of this paper is to evaluate the efficiency of a duckweed pond in the polishing of a stabilization pond effluent, as well as quantify its biomass production. Once an adequate destination is given to the produced biomass, the wastewater treatment plant can work in a sustainable and integrated way. Design/methodology/approach The duckweed pond consisted of a tank with volume 0.44 m3, operating in continuous flow with an outflow of 0.12 m3/day and hydraulic retention time of 3.8 days. Effluent samples were collected before and after the treatment, with analyzes made: daily-pH, dissolved oxygen and temperature; twice a week – total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD); and weekly – total solids (TS) and Biochemical Oxygen Demand (BOD5). The duckweeds were collected each for seven days for its production quantification. Findings The highest efficiency of TN, TP, COD, BOD5 and TS removal were of 74.67, 66.18, 88.12, 91.14 and 48.9 percent, respectively. The highest biomass production rate was 10.33 g/m2/day in dry mass. Research limitations/implications There was great variation in biomass production, which may be related to the stabilization pond effluent conditions. The evaluation of the effluent composition, which will be treated with duckweeds, is recommended. Practical implications The evaluated treatment system obtained positive results for the reduction in the analyzed variables concentration, being an efficient technology and with operational simplicity for the domestic effluent polishing. Originality/value The motivation of this work was to bring a simple system of treatment and to give value to a domestic wastewater treatment system in a way that, at the same time the effluent polluter level is reduced and it is also possible to produce biomass during the treatment process.


Sign in / Sign up

Export Citation Format

Share Document