scholarly journals Investigating Multi-cancer Biomarkers and Their Cross-predictability in the Expression Profiles of Multiple Cancer Types

2009 ◽  
Vol 4 ◽  
pp. BMI.S930 ◽  
Author(s):  
George C. Tseng ◽  
Chunrong Cheng ◽  
Yan Ping Yu ◽  
Joel Nelson ◽  
George Michalopoulos ◽  
...  

Microarray technology has been widely applied to the analysis of many malignancies, however, integrative analyses across multiple studies are rarely investigated. In this study we performed a meta-analysis on the expression profiles of four published studies analyzing organ donor, benign tissues adjacent to tumor and tumor tissues from liver, prostate, lung and bladder samples. We identified 99 distinct multi-cancer biomarkers in the comparison of all three tissues in liver and prostate and 44 in the comparison of normal versus tumor in liver, prostate and lung. The bladder samples appeared to have a different list of biomarkers from the other three cancer types. The identified multi-cancer biomarkers achieved high accuracy similar to using whole genome in the within-cancer-type prediction. They also performed superior than the one using whole genome in inter-cancer-type prediction. To test the validity of the multi-cancer biomarkers, 23 independent prostate cancer samples were evaluated and 96% accuracy was achieved in inter-study prediction from the original prostate, liver and lung cancer data sets respectively. The result suggests that the compact lists of multi-cancer biomarkers are important in cancer development and represent the common signatures of malignancies of multiple cancer types. Pathway analysis revealed important tumorogenesis functional categories.

2018 ◽  
Author(s):  
Viraj Deshpande ◽  
Jens Luebeck ◽  
Mehrdad Bakhtiari ◽  
Nam-Phuong D Nguyen ◽  
Kristen M Turner ◽  
...  

AbstractFocal oncogene amplification and rearrangements drive tumor growth and evolution in multiple cancer types. We developed a tool, AmpliconArchitect (AA), which can robustly reconstruct the fine structure of focally amplified regions using whole genome sequencing. AA-reconstructed amplicons in pan-cancer data and in virus-driven cervical cancer samples revealed many novel insights about focal amplifications. Specifically, the findings lend support to extrachromosomally mediated mechanisms for copy number expansion, and oncoviral pathogenesis.


2020 ◽  
Author(s):  
Erik Christensen ◽  
Alaine Naidas ◽  
Mia Husic ◽  
Parisa Shooshtari

ABSTRACTTumour microenvironments (TME) contain a variety of cells including but not limited to stromal fibroblasts, endothelial cells, immune cells, malignant cells, and cells of the tissues of origin, whose interactions likely influence tumour behaviour and response to cancer treatment. The specific composition of the TME can be elucidated using single-cell RNA sequencing (scRNA-seq) by measuring expression profiles of individual cells. Several scRNA-seq datasets from multiple cancer types have been published in recent years, yet we still lack a comprehensive database for the collection and presentation of TME data from these studies in an easily accessible format. We have thus built a database of TME scRNA-seq data, containing 21 TME scRNA-seq datasets from 12 different cancer types. We have also created an R package called TMExplorer, which provides an interface to easily search and access all available datasets and their metadata. Data and metadata are kept in a consistent format across all datasets, with multiple expression formats available depending on the use case. Users can view a table of metadata and select individual datasets or filter them by specific characteristics. Users may also select a specific type of cancer and view all published scRNA-seq data for that cancer type available in our database. Users are provided with an option to save the data in multiple formats in order to view or process it outside of R. Thus, the TMExplorer database and search tool allows for thorough examination of the TME using scRNA-seq in a way that is streamlined and allows for easy integration into already existing scRNA-seq analysis pipelines.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A520-A520
Author(s):  
Son Pham ◽  
Tri Le ◽  
Tan Phan ◽  
Minh Pham ◽  
Huy Nguyen ◽  
...  

BackgroundSingle-cell sequencing technology has opened an unprecedented ability to interrogate cancer. It reveals significant insights into the intratumoral heterogeneity, metastasis, therapeutic resistance, which facilitates target discovery and validation in cancer treatment. With rapid advancements in throughput and strategies, a particular immuno-oncology study can produce multi-omics profiles for several thousands of individual cells. This overflow of single-cell data poses formidable challenges, including standardizing data formats across studies, performing reanalysis for individual datasets and meta-analysis.MethodsN/AResultsWe present BioTuring Browser, an interactive platform for accessing and reanalyzing published single-cell omics data. The platform is currently hosting a curated database of more than 10 million cells from 247 projects, covering more than 120 immune cell types and subtypes, and 15 different cancer types. All data are processed and annotated with standardized labels of cell types, diseases, therapeutic responses, etc. to be instantly accessed and explored in a uniform visualization and analytics interface. Based on this massive curated database, BioTuring Browser supports searching similar expression profiles, querying a target across datasets and automatic cell type annotation. The platform supports single-cell RNA-seq, CITE-seq and TCR-seq data. BioTuring Browser is now available for download at www.bioturing.com.ConclusionsN/A


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2476 ◽  
Author(s):  
Shaoli Das ◽  
Kevin Camphausen ◽  
Uma Shankavaram

To elucidate the role of immune cell infiltration as a prognostic signature in solid tumors, we analyzed immune-function-related genes from four publicly available single-cell RNA-Seq data sets and twenty bulk tumor RNA-Seq data sets from The Cancer Genome Atlas (TCGA). Unsupervised clustering of pan-cancer transcriptomic signature showed two major immune function types: one related to NK-, T-, and B-cell functions and the other related to monocyte, macrophage, dendritic cell, and Toll-like receptor functions. Kaplan–Meier analysis showed differential prognosis of these two groups, dependent on the cancer type. Our analysis of TCGA solid tumors with an elastic net model identified 155 genes associated with disease-free survival in different tumor types with varied influence across different cancer types. With this gene set, we computed cancer-specific prognostic immune score models for individual cancer types that predicted disease-free and overall survival. Validation of our model on available published data of immune checkpoint blockade therapies on melanoma, kidney renal cell carcinoma, non-small cell lung cancer, gastric cancer and bladder cancer confirmed that cancer-specific higher immune scores are associated with response to immunotherapy. Our analysis provides a comprehensive map of cancer-specific immune-related prognostic gene sets that are associated with immunotherapy response.


F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 232 ◽  
Author(s):  
Martin L. Ashdown ◽  
Andrew P. Robinson ◽  
Steven L. Yatomi-Clarke ◽  
M. Luisa Ashdown ◽  
Andrew Allison ◽  
...  

Complete response (CR) rates reported for cytotoxic chemotherapy for late-stage cancer patients are generally low, with few exceptions, regardless of the solid cancer type or drug regimen. We investigated CR rates reported in the literature for clinical trials using chemotherapy alone, across a wide range of tumour types and chemotherapeutic regimens, to determine an overall CR rate for late-stage cancers. A total of 141 reports were located using the PubMed database. A meta-analysis was performed of reported CR from 68 chemotherapy trials (total 2732 patients) using standard agents across late-stage solid cancers—a binomial model with random effects was adopted. Mean CR rates were compared for different cancer types, and for chemotherapeutic agents with different mechanisms of action, using a logistic regression. Our results showed that the CR rates for chemotherapy treatment of late-stage cancer were generally low at 7.4%, regardless of the cancer type or drug regimen used. We found no evidence that CR rates differed between different chemotherapy drug types, but amongst different cancer types small CR differences were evident, although none exceeded a mean CR rate of 11%. This remarkable concordance of CR rates regardless of cancer or therapy type remains currently unexplained, and motivates further investigation.


2022 ◽  
Author(s):  
Malvika Sudhakar ◽  
Raghunathan Rengaswamy ◽  
Karthik Raman

The progression of tumorigenesis starts with a few mutational and structural driver events in the cell. Various cohort-based computational tools exist to identify driver genes but require a large number of samples to produce reliable results. Many studies use different methods to identify driver mutations/genes from mutations that have no impact on tumour progression; however, a small fraction of patients show no mutational events in any known driver genes. Current unsupervised methods map somatic and expression data onto a network to identify the perturbation in the network. Our method is the first machine learning model to classify genes as tumour suppressor gene (TSG), oncogene (OG) or neutral, thus assigning the functional impact of the gene in the patient. In this study, we develop a multi-omic approach, PIVOT (Personalised Identification of driVer OGs and TSGs), to train on experimentally or computationally validated mutational and structural driver events. Given the lack of any gold standards for the identification of personalised driver genes, we label the data using four strategies and, based on classification metrics, show gene-based labelling strategies perform best. We build different models using SNV, RNA, and multi-omic features to be used based on the data available. Our models trained on multi-omic data improved predictions compared to mutation and expression data, achieving an accuracy >0.99 for BRCA, LUAD and COAD datasets. We show network and expression-based features contribute the most to PIVOT. Our predictions on BRCA, COAD and LUAD cancer types reveal commonly altered genes such as TP53, and PIK3CA, which are predicted drivers for multiple cancer types. Along with known driver genes, our models also identify new driver genes such as PRKCA, SOX9 and PSMD4. Our multi-omic model labels both CNV and mutations with a more considerable contribution by CNV alterations. While predicting labels for genes mutated in multiple samples, we also label rare driver events occurring in as few as one sample. We also identify genes with dual roles within the same cancer type. Overall, PIVOT labels personalised driver genes as TSGs and OGs and also identifies rare driver genes. PIVOT is available at https://github.com/RamanLab/PIVOT.


2021 ◽  
Author(s):  
H. Robert Frost

AbstractThe genetic alterations that underlie cancer development are highly tissue-specific with the majority of driving alterations occurring in only a few cancer types and with alterations common to multiple cancer types often showing a tissue-specific functional impact. This tissue-specificity means that the biology of normal tissues carries important information regarding the pathophysiology of the associated cancers, information that can be leveraged to improve the power and accuracy of cancer genomic analyses. Research exploring the use of normal tissue data for the analysis of cancer genomics has primarily focused on the paired analysis of tumor and adjacent normal samples. Efforts to leverage the general characteristics of normal tissue for cancer analysis has received less attention with most investigations focusing on understanding the tissue-specific factors that lead to individual genomic alterations or dysregulated pathways within a single cancer type. To address this gap and support scenarios where adjacent normal tissue samples are not available, we explored the genome-wide association between the transcriptomes of 21 solid human cancers and their associated normal tissues as profiled in healthy individuals. While the average gene expression profiles of normal and cancerous tissue may appear distinct, with normal tissues more similar to other normal tissues than to the associated cancer types, when transformed into relative expression values, i.e., the ratio of expression in one tissue or cancer relative to the mean in other tissues or cancers, the close association between gene activity in normal tissues and related cancers is revealed. As we demonstrate through an analysis of tumor data from The Cancer Genome Atlas and normal tissue data from the Human Protein Atlas, this association between tissue-specific and cancer-specific expression values can be leveraged to improve the prognostic modeling of cancer, the comparative analysis of different cancer types, and the analysis of cancer and normal tissue pairs.


2015 ◽  
Vol 13 (06) ◽  
pp. 1550019 ◽  
Author(s):  
Alexei A. Sharov ◽  
David Schlessinger ◽  
Minoru S. H. Ko

We have developed ExAtlas, an on-line software tool for meta-analysis and visualization of gene expression data. In contrast to existing software tools, ExAtlas compares multi-component data sets and generates results for all combinations (e.g. all gene expression profiles versus all Gene Ontology annotations). ExAtlas handles both users’ own data and data extracted semi-automatically from the public repository (GEO/NCBI database). ExAtlas provides a variety of tools for meta-analyses: (1) standard meta-analysis (fixed effects, random effects, z-score, and Fisher’s methods); (2) analyses of global correlations between gene expression data sets; (3) gene set enrichment; (4) gene set overlap; (5) gene association by expression profile; (6) gene specificity; and (7) statistical analysis (ANOVA, pairwise comparison, and PCA). ExAtlas produces graphical outputs, including heatmaps, scatter-plots, bar-charts, and three-dimensional images. Some of the most widely used public data sets (e.g. GNF/BioGPS, Gene Ontology, KEGG, GAD phenotypes, BrainScan, ENCODE ChIP-seq, and protein–protein interaction) are pre-loaded and can be used for functional annotations.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Erdogan Taskesen ◽  
Sjoerd M. H. Huisman ◽  
Ahmed Mahfouz ◽  
Jesse H. Krijthe ◽  
Jeroen de Ridder ◽  
...  

Abstract The use of genome-wide data in cancer research, for the identification of groups of patients with similar molecular characteristics, has become a standard approach for applications in therapy-response, prognosis-prediction, and drug-development. To progress in these applications, the trend is to move from single genome-wide measurements in a single cancer-type towards measuring several different molecular characteristics across multiple cancer-types. Although current approaches shed light on molecular characteristics of various cancer-types, detailed relationships between patients within cancer clusters are unclear. We propose a novel multi-omic integration approach that exploits the joint behavior of the different molecular characteristics, supports visual exploration of the data by a two-dimensional landscape, and inspection of the contribution of the different genome-wide data-types. We integrated 4,434 samples across 19 cancer-types, derived from TCGA, containing gene expression, DNA-methylation, copy-number variation and microRNA expression data. Cluster analysis revealed 18 clusters, where three clusters showed a complex collection of cancer-types, squamous-cell-carcinoma, colorectal cancers, and a novel grouping of kidney-cancers. Sixty-four samples were identified outside their tissue-of-origin cluster. Known and novel patient subgroups were detected for Acute Myeloid Leukemia’s, and breast cancers. Quantification of the contributions of the different molecular types showed that substructures are driven by specific (combinations of) molecular characteristics.


2005 ◽  
Vol 26 (8) ◽  
pp. 1368-1373 ◽  
Author(s):  
Amanda Ewart-Toland ◽  
Qi Dai ◽  
Yu-Tang Gao ◽  
Hiroki Nagase ◽  
Malcolm G. Dunlop ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document