An Investigation on Aldehyde and Ammonia Emissions from a 4-Stroke Gasoline-Fueled Motorcycle. Ammonia Emission Reduction by using a SCR Catalyst

Author(s):  
Luiz Carlos Daemme ◽  
Renato de Arruda Penteado ◽  
Cláudio Furlan ◽  
Marcelo Errera ◽  
Fátima M. Z. Zotin
2021 ◽  
Author(s):  
Dzidra Kreismane ◽  
◽  
Elita Aplocina ◽  
Kaspars Naglis-Liepa ◽  
Laima Berzina ◽  
...  

Feeding livestock a balanced diet with a differentiated crude protein (CP) content, depending on the lactation phase can reduce nitrogen emissions from livestock excrement and urine. A higher content of non-starch polysaccharides in livestock diets improves feed absorption in the livestock body and, consequently, nitrogen is emitted more from protein present in livestock manure than from urea acid present in livestock urine. The aim of the study is to calculate the ammonia emission reduction potential in Latvia by optimizing the feeding of dairy cows and ensuring life longevity, as well as provide justification for ammonia emission reduction in dairy farms. Calculations made by using the NorFor Model for optimization of dairy cow (Bos primigenius f. taurus) diets revealed that compared with lowyielding cows, a higher CP content diet fed to high-yielding cows at the beginning of lactation increased the amount of nitrogen (N) in their excrement and urine by 90–180 g d-1. Reducing the CP content in the cow diet by an average of 10 g kg-1 dry matter (DM) during mid-lactation resulted in the same trend. Reducing the CP content in the cow diet during late lactation and the dry period by another 20–30 g kg-1 of DM, N emissions from excrement and urine significantly decreased. Increasing the lifespan of dairy cows also means reducing ammonia emissions from the farm. By increasing the number of lactations per cow on dairy farm, it is possible to reduce the number of heifers per cow. The total reduction of ammonia emissions in Latvia was calculated based on a long-term projection of a decrease of 0.1 heifer per dairy cow. Ammonia emissions could be reduced by 0.051 kt by decreasing the number of heifers by 12.54 thou. at the planned increase in the lifespan of dairy cows by 2030.


2021 ◽  
Vol 11 (13) ◽  
pp. 5970
Author(s):  
Marianna Magyar ◽  
Béla Pirkó ◽  
Julianna Kótiné Seenger ◽  
Nóra Hegedűsné Baranyai ◽  
Károly Dublecz ◽  
...  

The Ammonia Gas Emission Model for Swine (AGEM-S), a nitrogen flow model, was created with the objective of assisting in the reduction of ammonia emissions in the Hungarian pig sector. Regarding the applied technological processes and considering the factors that influence ammonia emissions, the model quantifies the amount of ammonia emissions of pig farming in all stages (feeding, housing technology, manure storage, and application in the field). The aim of the project was to create a system that performs general calculations using the input data used by practicing farmers, without compromising the information content of the output data. Using this system, the input parameters can be entered as simply as possible and in the shortest possible time. In addition to demonstrating the impact of ammonia emission reduction measures to farmers from an integrated N management approach, AGEM-S has the potential to support the transfer of emission reduction technologies and practices at the farm level as a knowledge transfer tool primarily, but also as a decision support tool for technological change.


AGROFOR ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Maarit HELLSTEDT ◽  
Hannu E.S. HAAPALA

Agriculture is the most significant source of Ammonia emission that causes e.g. loss of Nitrogen from agricultural systems. Manure is the main source of Ammonia emissions and causes losses in the nutrient cycles of agriculture as well as local odour nuisance. By using different bedding materials, it is possible to reduce both the Ammonia emissions and to improve the cycling of nutrient. Peat is known as an effective litter material but its use as a virtually non-renewable resource is questionable. Therefore, we need to find new bedding materials to replace peat. In this study, the effect of ten different industrial by-products, reeds and stalks to reduce Ammonia emissions was tested in laboratory in January 2020. Dairy cow slurry and bedding materials were mixed in a volume ratio of 4:1. The Ammonia emission was measured for two weeks once or twice a day. Measurements were performed with a photoacoustic method. The results show that all tested materials reduce the Ammonia emission from the cow slurry used. Interesting new materials to substitute peat are zero fiber and briquetted textile waste. Wheat bran, pellets made of reed canary grass and chopped bulrush had the best effect which is at the same level as that of peat. However, no statistically significant differences between the calculated emission rates were found.


Author(s):  
Rhenny Ratnawati ◽  
Sugito Sugito

The process of aerobic composting the slaughterhouse (SH) solid waste generate ammonia emissions. Aim: The objective of this research to study the ability of the adsorbent to use zeolite to reduce ammonia gas emissions during the composting process of SH solid waste. Methodology and Results: Reduction of ammonia emission is conducted during the aerobic composting process which is 50 days. The raw material composition of the composting process used was 100% rumen contents, 60% rumen contents: 40% straw, 50% rumen contents: 50% straw, and 40% rumen contents: 60% straw. Zeolite used in the form of granular size 100 mesh. The result of the research showed that the level of release of ammonia gas emissions during the composting process could be reduced by zeolite. Conclusion, significance, and impact study: The efficiency of reducing ammonia gas emissions using zeolite adsorbents in the composting process of SH solid waste ranges from 98.09 - 99.40% on average. Zeolite is an adsorbent that has high adsorption power because it has many pores and has a high ion exchange high capacity and serves as an absorbent cation that can cause environmental pollution.


2021 ◽  
Author(s):  
Enrico Dammers ◽  
Mark Shephard ◽  
Evan White ◽  
Debora Griffin ◽  
Evan Chow ◽  
...  

<p>While ammonia (NH3) at its current levels is known to be a hazard to environmental and human health, the atmospheric budget is still quite uncertain. This can largely be attributed to the short lifetime of ammonia in combination with an overall lack of (dense) in-situ measurement networks. The capability to observe ammonia distributions with satellites has opened new ways to study the atmospheric ammonia budget. Previous studies have demonstrated the capability of current ammonia satellite sensors to resolve emissions from point like sources, biomass burning, and constraining emission sources at a regional level with methods involving the use of air quality models.</p><p>In this study, we present the first spatially resolved ammonia emission estimates across the globe using a consistent methodology based solely on ammonia satellite observations from the Cross-track Infrared Sounder (CrIS) instrument and ECMWF ERA5 wind fields. The concept was evaluated for North Western Europe and demonstrated the ability to constrain annual emissions at county- to provincial-levels with most deviations within the bounds found in the error analysis. Furthermore, we show that for some regions the spatial patterns found in the satellite observations are consistent while others do not match the current inventories. Finally, the results indicate that the absolute emission levels tend to be underestimated for parts of the globe.</p>


2009 ◽  
Vol 2 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Thomas Veens ◽  
Hwan Namkung ◽  
Steven Leeson

Ammonia emissions from poultry farms currently contribute to air pollution and acid rain. There are no regulations in North America regarding emissions of ammonia although regulations are being drawn up in the USA and there is concern about the impacts of animal agricultural on the environment. Low crude protein (CP) diets can be an effective contributor to strategies of ammonia mitigation. Since virtually all ammonia originates from nitrogenous compounds in feed, then any attempt at ammonia mitigation must involve scrutiny of the levels of nitrogen, protein and amino acids (AA). Reducing dietary nitrogen/CP leads to reduced nitrogen in the excreta with less potential for microbial conversion to ammonia. Using low CP diets may be an economical strategy for ammonia emissions since the concept involves no special feed additives other than replacement AAs. Although AA requirements for layer hens are well known, the minimal amount of CP required is less clearly defined. AA requirements should be independent of diet CP, assuming there is adequate nitrogen for protein synthesis. However, the birds/ response in terms of reduced egg numbers and growth or change in egg composition, suggest that our estimates of amino acid supply are incorrect under these dietary regimes. Independent of bird age and AA supply, more problems are recorded when CP levels are <14-15%. It is timely to redefine the maintenance AA requirements of layers. Since the composition of eggs should give us direct estimates of needs for production, the only other unknown in formulating low CP diets is the efficiency of utilisation of free amino acids versus intact proteins.


1996 ◽  
Vol 127 (4) ◽  
pp. 501-509 ◽  
Author(s):  
T. Dewes

SUMMARYIn laboratory tests using stable manure consisting of wheat straw and slurry, ammonia emission was found to have two peaks corresponding to the population dynamics of proteolytic bacteria and amino acid-degrading bacteria respectively. Cumulative ammonia emissions over 14 days were 0·8–23·2% of the initial total nitrogen (Nt) and were both abiotically and biotically induced. Changes in pH had the most significant effect on the abiotically induced ammonia emissions. After 14 days of decomposition, at pH values of 6·0 and 7·5, abiotically induced emissions remained close to the limit of detectability, whereas at pH 9·0 as much as 9·8% of the initial Nt was lost. An increase in storage pressure from 0 to 400 and 800 kp/m2 generally decreased the biotic emissions to 9·6, 2·8 and 2·3%; while increasing the amounts of litter (2·5, 5·0 and 15·0 kg straw/LAU per day) led to a decline not only in the biotic (17·1, 12·8, 3·5%) but also in the abiotic emissions (6·1, 5·5, 1·6%). Varying the temperature (20, 30 and 40 °C) resulted in biotically induced emissions of 7·9, 11·7 and 11·6%, respectively, and abiotically induced emissions of 1·1, 1·4 and 2·2% of the initial Nt. At temperatures of 30 and 40 °C, the amount of microbially digested sources of carbon available was obviously sufficient to permit almost total reincorporation of NH4+ from 4 days onwards.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.


Author(s):  
Zuzanna Jarosz ◽  
Antoni Faber

The aim of the study was to present ammonia emissions from animal production on a regional scale in 2016. Emission estimates in particular regions were based on methodology developed by EEA in 2016 and applied in Poland by The National Centre for Emissions Management (NCEM). The conducted analyses were based on the size of livestock population, farming system and emission factors at every stage of manure management. The analysis showed substantial spatial differentiation of ammonia emissions from animal production. Voivodships that accounted for the biggest share in emissions from cattle farming were as follows: Mazowieckie, Podlaskie and Wielkopolskie. Estimated emissions in these voivodships amounted to: 47.4, 32.8 and 21.7 Gg NH3, respectively. The highest levels of ammonia emissions from pig production were identified in the region of Wielkopolska. Ammonia emissions in this voivodship amounted to 16.2 Gg NH3. The Wielkopolska region is also distinguished by the highest ammonia emissions from poultry production. The emissions equaled 11.4 Gg NH3 and accounted for 24.1% of total emissions in this region. The realization of reduction commitments for ammonia imposed by the NEC Directive depends on the introduction of a set of changes in livestock production: regarding the housing method, animal nutrition, fertilizer storage and application as well as dissemination of good agricultural practices aiming at ammonia emission reduction.


2021 ◽  
Vol 52 (3) ◽  
Author(s):  
Celeste Righi Ricco ◽  
Alberto Finzi ◽  
Viviana Guido ◽  
Elisabetta Riva ◽  
Omar Ferrari ◽  
...  

Fertigation can be a suitable technique for utilizing digestate, minimizing nitrogen losses, and contributing to circularity within a farming system. For this purpose, digestate usually is first processed with a screw-press separator. However, further filtration is required to remove particles that could clog the nozzles of drip or sprinkling irrigation systems. Advanced filtration can be obtained using mechanical separation with screens having openings of 100- 300 μm. This operation can be another source of ammonia emission, but this aspect has not been adequately investigated. This study aimed to address this knowledge gap by evaluating the emissions from three different filtration systems for digestate. The study was conducted in three different farms located in Lombardy (Italy) using digestate to fertigate maize by drip irrigation (two farms) and pivot irrigation (one farm). Ammonia emissions were measured with passive samplers and the fluxes were examined using an inverse dispersion model implemented in Windtrax software. The emissions were measured both when the filtration systems were in operation and when they were switched off. Ammonia emissions (mean values between 375 and 876 μg NH3/m2/s) tended to increase during operation of the filtration systems. However, no significant differences were found in the emissions from active and inactive equipment on any of the farms. The emissions from the filtration systems were higher than from a storage tank (22-67 μg NH3/m2/s). However, the mean emissions amounted to only 0.3% of the nitrogen content of the digestate. These emissions can be considered irrelevant in the context of the whole management scheme for digestate. This work provides a first insight on ammonia emissions arising from advanced filtration of digestate, with specific reference to Po Valley farming systems. Further studies are required to improve knowledge about emissions from the entire digestate management process, including the treatments required for specific application techniques.


Sign in / Sign up

Export Citation Format

Share Document