Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure

1996 ◽  
Vol 127 (4) ◽  
pp. 501-509 ◽  
Author(s):  
T. Dewes

SUMMARYIn laboratory tests using stable manure consisting of wheat straw and slurry, ammonia emission was found to have two peaks corresponding to the population dynamics of proteolytic bacteria and amino acid-degrading bacteria respectively. Cumulative ammonia emissions over 14 days were 0·8–23·2% of the initial total nitrogen (Nt) and were both abiotically and biotically induced. Changes in pH had the most significant effect on the abiotically induced ammonia emissions. After 14 days of decomposition, at pH values of 6·0 and 7·5, abiotically induced emissions remained close to the limit of detectability, whereas at pH 9·0 as much as 9·8% of the initial Nt was lost. An increase in storage pressure from 0 to 400 and 800 kp/m2 generally decreased the biotic emissions to 9·6, 2·8 and 2·3%; while increasing the amounts of litter (2·5, 5·0 and 15·0 kg straw/LAU per day) led to a decline not only in the biotic (17·1, 12·8, 3·5%) but also in the abiotic emissions (6·1, 5·5, 1·6%). Varying the temperature (20, 30 and 40 °C) resulted in biotically induced emissions of 7·9, 11·7 and 11·6%, respectively, and abiotically induced emissions of 1·1, 1·4 and 2·2% of the initial Nt. At temperatures of 30 and 40 °C, the amount of microbially digested sources of carbon available was obviously sufficient to permit almost total reincorporation of NH4+ from 4 days onwards.

2013 ◽  
Author(s):  
Luiz Carlos Daemme ◽  
Renato de Arruda Penteado ◽  
Cláudio Furlan ◽  
Marcelo Errera ◽  
Fátima M. Z. Zotin

2001 ◽  
Vol 64 (7) ◽  
pp. 927-933 ◽  
Author(s):  
RAJESH MODI ◽  
Y. HIRVI ◽  
A. HILL ◽  
M. W. GRIFFITHS

The ability of Salmonella Enteritidis to survive in the presence of phage, SJ2, during manufacture, ripening, and storage of Cheddar cheese produced from raw and pasteurized milk was investigated. Raw milk and pasteurized milk were inoculated to contain 104 CFU/ml of a luminescent strain of Salmonella Enteritidis (lux) and 108 PFU/ml SJ2 phage. The milks were processed into Cheddar cheese following standard procedures. Cheese samples were examined for Salmonella Enteritidis (lux), lactic acid bacteria, molds and yeasts, coliforms, and total counts, while moisture, fat, salt, and pH values were also measured. Salmonella Enteritidis (lux) was enumerated in duplicate samples by surface plating on MacConkey novobiocin agar. Bioluminescent colonies of Salmonella Enteritidis were identified in the NightOwl molecular imager. Samples were taken over a period of 99 days. Counts of Salmonella Enteritidis (lux) decreased by 1 to 2 log cycles in raw and pasteurized milk cheeses made from milk containing phage. In cheeses made from milks to which phage was not added, there was an increase in Salmonella counts of about 1 log cycle. Lower counts of Salmonella Enteritidis (lux) were observed after 24 h in pasteurized milk cheese containing phage compared to Salmonella counts in raw milk cheese with phage. Salmonella Enteritidis (lux) survived in raw milk and pasteurized milk cheese without phage, reaching a final concentration of 103 CFU/g after 99 days of storage at 8°C. Salmonella did not survive in pasteurized milk cheese after 89 days in the presence of phage. However, Salmonella counts of approximately 50 CFU/g were observed in raw milk cheese containing phage even after 99 days of storage. In conclusion, this study demonstrates that the addition of phage may be a useful adjunct to reduce the ability of Salmonella to survive in Cheddar cheese made from both raw and pasteurized milk.


AGROFOR ◽  
2020 ◽  
Vol 5 (3) ◽  
Author(s):  
Maarit HELLSTEDT ◽  
Hannu E.S. HAAPALA

Agriculture is the most significant source of Ammonia emission that causes e.g. loss of Nitrogen from agricultural systems. Manure is the main source of Ammonia emissions and causes losses in the nutrient cycles of agriculture as well as local odour nuisance. By using different bedding materials, it is possible to reduce both the Ammonia emissions and to improve the cycling of nutrient. Peat is known as an effective litter material but its use as a virtually non-renewable resource is questionable. Therefore, we need to find new bedding materials to replace peat. In this study, the effect of ten different industrial by-products, reeds and stalks to reduce Ammonia emissions was tested in laboratory in January 2020. Dairy cow slurry and bedding materials were mixed in a volume ratio of 4:1. The Ammonia emission was measured for two weeks once or twice a day. Measurements were performed with a photoacoustic method. The results show that all tested materials reduce the Ammonia emission from the cow slurry used. Interesting new materials to substitute peat are zero fiber and briquetted textile waste. Wheat bran, pellets made of reed canary grass and chopped bulrush had the best effect which is at the same level as that of peat. However, no statistically significant differences between the calculated emission rates were found.


Author(s):  
Rhenny Ratnawati ◽  
Sugito Sugito

The process of aerobic composting the slaughterhouse (SH) solid waste generate ammonia emissions. Aim: The objective of this research to study the ability of the adsorbent to use zeolite to reduce ammonia gas emissions during the composting process of SH solid waste. Methodology and Results: Reduction of ammonia emission is conducted during the aerobic composting process which is 50 days. The raw material composition of the composting process used was 100% rumen contents, 60% rumen contents: 40% straw, 50% rumen contents: 50% straw, and 40% rumen contents: 60% straw. Zeolite used in the form of granular size 100 mesh. The result of the research showed that the level of release of ammonia gas emissions during the composting process could be reduced by zeolite. Conclusion, significance, and impact study: The efficiency of reducing ammonia gas emissions using zeolite adsorbents in the composting process of SH solid waste ranges from 98.09 - 99.40% on average. Zeolite is an adsorbent that has high adsorption power because it has many pores and has a high ion exchange high capacity and serves as an absorbent cation that can cause environmental pollution.


2021 ◽  
Author(s):  
Enrico Dammers ◽  
Mark Shephard ◽  
Evan White ◽  
Debora Griffin ◽  
Evan Chow ◽  
...  

<p>While ammonia (NH3) at its current levels is known to be a hazard to environmental and human health, the atmospheric budget is still quite uncertain. This can largely be attributed to the short lifetime of ammonia in combination with an overall lack of (dense) in-situ measurement networks. The capability to observe ammonia distributions with satellites has opened new ways to study the atmospheric ammonia budget. Previous studies have demonstrated the capability of current ammonia satellite sensors to resolve emissions from point like sources, biomass burning, and constraining emission sources at a regional level with methods involving the use of air quality models.</p><p>In this study, we present the first spatially resolved ammonia emission estimates across the globe using a consistent methodology based solely on ammonia satellite observations from the Cross-track Infrared Sounder (CrIS) instrument and ECMWF ERA5 wind fields. The concept was evaluated for North Western Europe and demonstrated the ability to constrain annual emissions at county- to provincial-levels with most deviations within the bounds found in the error analysis. Furthermore, we show that for some regions the spatial patterns found in the satellite observations are consistent while others do not match the current inventories. Finally, the results indicate that the absolute emission levels tend to be underestimated for parts of the globe.</p>


2009 ◽  
Vol 2 (3) ◽  
pp. 143-150 ◽  
Author(s):  
Thomas Veens ◽  
Hwan Namkung ◽  
Steven Leeson

Ammonia emissions from poultry farms currently contribute to air pollution and acid rain. There are no regulations in North America regarding emissions of ammonia although regulations are being drawn up in the USA and there is concern about the impacts of animal agricultural on the environment. Low crude protein (CP) diets can be an effective contributor to strategies of ammonia mitigation. Since virtually all ammonia originates from nitrogenous compounds in feed, then any attempt at ammonia mitigation must involve scrutiny of the levels of nitrogen, protein and amino acids (AA). Reducing dietary nitrogen/CP leads to reduced nitrogen in the excreta with less potential for microbial conversion to ammonia. Using low CP diets may be an economical strategy for ammonia emissions since the concept involves no special feed additives other than replacement AAs. Although AA requirements for layer hens are well known, the minimal amount of CP required is less clearly defined. AA requirements should be independent of diet CP, assuming there is adequate nitrogen for protein synthesis. However, the birds/ response in terms of reduced egg numbers and growth or change in egg composition, suggest that our estimates of amino acid supply are incorrect under these dietary regimes. Independent of bird age and AA supply, more problems are recorded when CP levels are <14-15%. It is timely to redefine the maintenance AA requirements of layers. Since the composition of eggs should give us direct estimates of needs for production, the only other unknown in formulating low CP diets is the efficiency of utilisation of free amino acids versus intact proteins.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.


1979 ◽  
Vol 177 (3) ◽  
pp. 879-886 ◽  
Author(s):  
M E Scott ◽  
K A Koehler ◽  
R G Hiskey

The effects of pH and Ca2+ on the intrinsic fluorescence of bovine prothrombin fragment 1 were investigated to deduce the nature of protein functional groups involved in Ca2+ binding to fragment 1. From pH values of 9 to 3, increasing the H3O+ concentration results in quenching of the fluorescence of fragment 1. Reversible pH-titration curves are obtained which appear to consist of two regions. From pH 4 to pH6.5 a broad titration curve is obtained, whereas from pH6.5 to 9 a more pronounced titration behaviour is evidenced by a group or groups on fragment 1 with an apparent pKa of approx. 7.5. In contrast, the apparent association constant for Ca2+ and fragment 1 shows a sharp pH-dependence in the region between pH7 and 8 with tighter Ca2+ binding at higher pH values. A PKa of approx. 7.5 can be estimated for the group or groups on fragment 1 linked to the tight binding of Ca2+. Both H3O+ and Ca2+ result in blue-shifts in the wave-lengths of fragment-1 emission. These results are interpreted in terms of H+ - and Ca2+ - induced changes in the conformation of fragment 1 as a result of surface-charge neutralization.


Author(s):  
Zuzanna Jarosz ◽  
Antoni Faber

The aim of the study was to present ammonia emissions from animal production on a regional scale in 2016. Emission estimates in particular regions were based on methodology developed by EEA in 2016 and applied in Poland by The National Centre for Emissions Management (NCEM). The conducted analyses were based on the size of livestock population, farming system and emission factors at every stage of manure management. The analysis showed substantial spatial differentiation of ammonia emissions from animal production. Voivodships that accounted for the biggest share in emissions from cattle farming were as follows: Mazowieckie, Podlaskie and Wielkopolskie. Estimated emissions in these voivodships amounted to: 47.4, 32.8 and 21.7 Gg NH3, respectively. The highest levels of ammonia emissions from pig production were identified in the region of Wielkopolska. Ammonia emissions in this voivodship amounted to 16.2 Gg NH3. The Wielkopolska region is also distinguished by the highest ammonia emissions from poultry production. The emissions equaled 11.4 Gg NH3 and accounted for 24.1% of total emissions in this region. The realization of reduction commitments for ammonia imposed by the NEC Directive depends on the introduction of a set of changes in livestock production: regarding the housing method, animal nutrition, fertilizer storage and application as well as dissemination of good agricultural practices aiming at ammonia emission reduction.


2018 ◽  
Vol 3 (2) ◽  
pp. 351-356
Author(s):  
Weny Weny ◽  
Rasdiansyah Rasdiansyah ◽  
Novia Mehra Erfiza

Abstrak. Sampai saat ini belum ada penelitian lebih lanjut mengenai pemanfaatan hasil samping dari produk asam sunti. Tujuan penelitian ini untuk melihat pengaruh perendaman ikan di dalam air asam sunti dan penyimpanannya pada suhu ruang terhadap karakteristik ikan. Penelitian ini menggunakan Rancangan Acak Kelompok Faktorial dengan 2 faktor yaitu faktor waktu perendaman (W), yang terdiri dari 3 taraf (W1 : 30 detik, W2 : 5 menit, W3 : 10 menit) dan lama penyimpanan (S), yang terdiri dari 2 taraf (S1 : 0 jam, S2 : 2 jam). Hasil penelitian menunjukkan bahwa karakteristik air asam sunti pada uji pH memiliki rataan yaitu 1,27, total asam 49% dan total bakteri asam laktat  5,1×104 CFU/gram. Nilai pH ikan setelah direndam air asam sunti 5,22-5,65 dengan rataan 5,43 dan nilai protein terlarut berkisar antara 18,42-18,74% dengan rataan 18,74%.Dari penelitian didapatkan bahwa waktu perendaman (W) berpengaruh nyata (P≤0,05) terhadap nilai protein terlarut dari ikan namun berpengaruh tidak nyata (P0,05) terhadap nilai pH ikan, uji deskriptif aroma dan tekstur ikan. Lama penyimpanan (S) berpengaruh sangat nyata (P≤0,01) terhadap nilai pH ikan setelah perendaman namun berpengaruh tidak nyata (P0,05) terhadap uji deskriptif aroma dan tekstur ikan. Interaksi waktu perendaman dengan lama penyimpanan berpengaruh nyata (P≤0,05) terhadap nilai pH ikan namun berpengaruh tidak nyata terhadap uji deskriptif aroma dan tekstur ikan.Waktu perendaman ikan di dalam air asam sunti selama 10 menit dapat menghambat kenaikan pH ikan selama penyimpanan sampai 2 jam. Semakin lama perendaman ikan di dalam air asam sunti maka semakin tinggi protein terlarut dari ikan.  Abstrack. Therefore, this study was conducted to see the effect of soaking the fish in asam sunti water and its storage at room temperature on the characteristics of the fish. This study uses a randomized block design factorial with 2 factors: soaking time (W), consisting of 3 levels (W1: 30 seconds, W2: 5 minutes, W3: 10 minutes) and storage time (S), consisting of 2 levels ( S1: 0 hours, S2: 2 hours). The results showed pHof asam sunti water is 1.27,  total acid is 49% and lactic acid bacteria has  of  5.1 × 104 CFU / gram and the soaked fish has pH values ranged from 5.22 to 5.65 with the average of 5.43 and soluble protein values ranged from 18.42 to 18.74% with the average 18.74%.The results indicated that the soaking time (W) has effect significantly to the value of soluble protein (P≤0,05) of fish but iteffect not significantly (P 0.05) on pH value of fish, descriptive test the of aroma and texture of the fish. Storage time (S) effect significantly (P≤0,01) to pH value of fish after soaking but it effectnot significantly (P 0.05) to the descriptive test of  aroma and texture of the fish. Interaction withsoaking time and storage (WxS) effect significantly (P≤0,05) to pH value of fish but it effect to not significantly the descriptive test of aroma and texture of the fish.Soaking time the fish in water for 10 minutes sunti can inhibit increasing in the pH of the fish during storage up to 2 hours. The longer soaking time of the fish in the asam sunti water, the higher sunti acid soluble proteins from value.


Sign in / Sign up

Export Citation Format

Share Document