scholarly journals Effect of different syngas compositions on the combustion characteristics and emission of a model combustor

2020 ◽  
Vol 39 (3) ◽  
Author(s):  
Y.S. Sanusi ◽  
H.A. Dandajeh

There is a growing need to design fuel flexible combustors. This require understanding of the combustion and emission characteristics of the combustors under varying fuel compositions. In the present study, the combustion characteristics and emission of methane and syngas flames were investigated numerically in a swirl stabilized combustor. The numerical model was developed using ANSYS-fluent software and validated using experimental values of temperature, CO2 and NOx emissions. A two-step chemical mechanism was used to model methane-air combustion. Results of the numerical validation showed similar trend between the experimental and predicted temperature along the combustor axis with about 5 % over prediction of the temperature. Syngas-air combustion was thereafter modeled using a 21 step chemical mechanism. Syngas compositions studied were: syngas A (67% CO: 33% H2), syngas B (50% CO: 50% H2) and syngas C (33% CO: 67% H2). Results showed that for pure methane, a V-shaped flame was observed with the flame attached to the fuel nozzle, while a lifted flame was observed for case of syngas A composition. CO gas with higher ignition temperature and flammability as compared to H2 gas is the dominant gas in syngas A fuel composition. Jet flames were observed for syngas B and syngas C. Carbon monoxide is a slow burning gas. Therefore syngas with low CO content has a low tendency of emission of CO from the combustor. This suggests that syngas with high CO content such syngas A may require more residence time to completely combust the CO gas. The NOx emission was observed to have the same trend as that of the combustor maximum temperature. Syngas C flame had the highest NOx emission, while, syngas A flame had no NOx emission. This is due to low combustor temperature observed in the case of syngas A flame. Keywords: Syngas, ANSYS-FLUENT, Swirl-stabilized combustor, NOx emission, Chemical Mechanism

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2020 ◽  
Vol 04 ◽  
Author(s):  
Guohai Jia ◽  
Lijun Li ◽  
Li Dai ◽  
Zicheng Gao ◽  
Jiping Li

Background: A biomass pellet rotary burner was chosen as the research object in order to study the influence of excess air coefficient on the combustion efficiency. The finite element simulation model of biomass rotary burner was established. Methods: The computational fluid dynamics software was applied to simulate the combustion characteristics of biomass rotary burner in steady condition and the effects of excess air ratio on pressure field, velocity field and temperature field was analyzed. Results: The results show that the flow velocity inside the burner gradually increases with the increase of inlet velocity and the maximum combustion temperature is also appeared in the middle part of the combustion chamber. Conclusion: When the excess air coefficient is 1.0 with the secondary air outlet velocity of 4.16 m/s, the maximum temperature of the rotary combustion chamber is 2730K with the secondary air outlet velocity of 6.66 m/s. When the excess air ratio is 1.6, the maximum temperature of the rotary combustion chamber is 2410K. When the air ratio is 2.4, the maximum temperature of the rotary combustion chamber is 2340K with the secondary air outlet velocity of 9.99 m/s. The best excess air coefficient is 1.0. The experimental value of combustion temperature of biomass rotary burner is in good agreement with the simulation results.


2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.


2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.


2021 ◽  
Author(s):  
Maryam Habibi ◽  
Mohsen Heidary ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract In this study, the dispersion and deposition of particles in the respiratory system attached to a mannequin lying down inside a room were investigated numerically. The respiratory system model was prepared by processing the CT scan images of a volunteer and was attached to a mannequin lying in the middle of a room. The flow field around the mannequin and effects of the thermal plume on the particle aspiration by the mannequin model was simulated using the Ansys-Fluent software. The aspiration efficiency of spherical particles in the airway was studied with the Lagrangian particle trajectory analysis, including the turbulence dispersion effects. For validation of numerical simulations, the aspiration efficiency of the particles obtained from the numerical solution was compared with the case of a standing mannequin. The results are presented for two different modes with upward and downward thermal plumes. For the first mode, due to the strong effect of the thermal plume in the upward direction, the aspiration efficiency of midrange particles increases. However, the aspiration efficiency of large micro-particles decreases for the first mode. For the second mode, with the downward thermal plume, the aspiration efficiency of small micro-particles increases significantly.


Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification


In order to meet the stringent emission standards significant efforts have been imparted to the research and development of cleaner IC engines. Diesel combustion and the formation of pollutants are directly influenced by spatial and temporal distribution of the fuel injected. The development and validation of computational fluid dynamics (CFD) models for diesel engine combustion and emissions is described. The complexity of diesel combustion requires simulation with many complex interacting sub models in order to have a success in improving the performance and to reduce the emissions. In the present work an attempt has been made to develop a multidimensional axe-symmetric model for CI engine combustion and emissions. Later simulations have been carried out using split injection for single, double and three pulses (split injection) for which commercial validation tool FLUENT was used for simulation. The tool solves basic governing equations of fluid flow that is continuity, momentum, species transport and energy equation. Using finite volume method turbulence was modeled by using RNG K-ɛ model. Injection was modeled using La Grangian approach and reaction was modeled using non premixed combustion which considers the effects of turbulence and detailed chemical mechanism into account to model the reaction rates. The specific heats were approximated using piecewise polynomials. Subsequently the simulated results have been validated with the existing experimental values. The peak pressure obtained by simulation for single and double is 10% higher than to that of experimental value. Whereas for triple injections 5% higher than to that of experimental value. For quadruple injection the pressure has been decreased by 10% when compared to triple injection.NOX have been decreased in simulation for single, double and triple injections by 15%, 28% and 20%.For quadruple injection NOX were reduced in quadruple injection by 20% to that of triple injection. The simulated value of soot for single, double and triple injections are 12%, 22% and 12% lesser than the experimental values. For quadruple injection the soot levels were almost negligible. The simulated heat release rates for single, double and triple were reduced by 12%, 18% and 11%. For quadruple injection heat release is reduced same as to that of triple injection.


Author(s):  
Mansour Al Qubeissi ◽  
Nawar Al-Esawi ◽  
Hakan Serhad Soyhan

The previously developed models for fuel droplet heating and evaporation processes, mainly the Discrete Multi Component Model (DMCM), and Multi-Dimensional Quasi-Discrete Model (MDQDM) are investigated for the aerodynamic combustion simulation. The models have been recently improved, and generalised for a broad range of bio-fossil fuel blends so that the application areas are broadened with increased accuracy. The main distinctive features of these models are that they consider the impacts of species thermal conductivities and diffusivities within the droplets to account for the temperature gradient, transient diffusion of species and recirculation. A formulation of fuel surrogates is made, using the recently introduced model, referred to as ‘’Complex Fuel Surrogate Model (CFSM)’’ and analysing their heating, evaporation, and combustion characteristics. The CFSM is aimed to reduce the full composition of fuel to a much smaller number of components based on their mass fractions, and to formulate fuel surrogates. Such approach has provided a proof of concept with the implementation of the developed model into a commercial CFD code ANSYS-Fluent. A case study is made for the CFD modelling of gas-turbine engine using kerosene fuel surrogate. The surrogate is proposed using the CFSM. The model is implemented into ANSYS-Fluent via a user-defined function to provide the first full simulation of the combustion process. Detailed chemical mechanism is also implemented into ANSYS Chemkin for the combustion study.


2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012028
Author(s):  
O A Kabov ◽  
Ya V Zubavichus ◽  
K E Cooper ◽  
M V Pukhovoy ◽  
V V Vinokurov ◽  
...  

Abstract The construction of the «Siberian Photon Ring Source», the SKIF synchrotron, in Novosibirsk is underway. At the first stage, six research workstations will be created, most of the devices of which work in a high vacuum. Synchrotron radiation is generated by superconducting Wigglers for two stations. The total radiation power is approaching 49 kW, and the power density on the axis is 92 kW/mrad2. The high energy density of the beam creates quite difficult conditions for the thermal management of optical elements at the workstations. The article presents specific requirements for cooling devices, an overview of the used and promising cooling systems is made, an example of calculating the temperature, stress and strain distribution in a diamond filter with a thickness of 300 microns using the ANSYS Fluent software package is given.


Sign in / Sign up

Export Citation Format

Share Document