Cold Atmospheric Plasma Decontamination of the Pericarps of Fruit

2008 ◽  
Vol 71 (2) ◽  
pp. 302-308 ◽  
Author(s):  
STEFANO PERNI ◽  
DAVID W. LIU ◽  
GILBERT SHAMA ◽  
MICHAEL G. KONG

This investigation describes the inactivation by cold atmospheric plasmas of one pathogenic and three spoilage organisms on the pericarps of mangoes and melons. The operating voltage necessary for efficient microbial decontamination of fruit pericarps was first established using Escherichia coli at a concentration of 107 CFU/cm2 on the surface of mango. It was found that, when the plasma was sustained slightly above its breakdown voltage of 12 kV (peak to peak), no inactivation was detected when cells were plated onto tryptone soya extract agar (TSA). However, when plated onto eosin methylene blue agar, sublethal injury corresponding to approximately 1 log reduction was achieved, whereas on TSA supplemented with 4% NaCl a greater reduction of 1.5 log was revealed. When the voltage was increased by 33% to 16 kV, a reduction in cell counts of 3 log was achieved on all three plating media. Further investigations at these new operating conditions were conducted using a range of spoilage microorganisms (Saccharomyces cerevisae, Pantoea agglomerans, and Gluconacetobacter liquefaciens) all at a surface concentration of 106 CFU/cm2 on the pericarps of mango and melon. P. agglomerans and G. liquefaciens were reduced below the detection limit (corresponding to 3 log) after only 2.5 s on both fruits, whereas E. coli required 5 s to reach the same level of inactivation. S. cerevisae was the most resistant organism studied and was reduced in numbers below the detection limit after 10 s on mango and 30 s on melon. The optical emission spectra generated by the cold atmospheric plasma at both high and low operating voltages were compared in order to identify putative lethal species. It was shown that an increase in the applied voltage led to more efficient production of reactive plasma species, particularly oxygen atoms, and the production of oxygen atoms was related to the level of bacterial inactivation achieved. Production of atomic oxygen could be used as an indicator of inactivation efficiency for scaling up cold plasma systems for whole fruit.

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1038
Author(s):  
Haodong Cui ◽  
Min Jiang ◽  
Wenhua Zhou ◽  
Ming Gao ◽  
Rui He ◽  
...  

A carrier-free CRISPR/Cas9 ribonucleoprotein delivery strategy for genome editing mediated by a cold atmospheric plasma (CAP) is described. The CAP is promising in many biomedical applications due to efficient production of bioactive ionized species. The MCF-7 cancer cells after CAP exposure exhibit increased extracellular reactive oxygen and nitrogen species (RONS) and altered membrane potential and permeability. Hence, transmembrane transport of Ca2+ into the cells increases and accelerates ATP hydrolysis, resulting in enhanced ATP-dependent endocytosis. Afterwards, the increased Ca2+ and ATP contents promote the release of cargo into cytoplasm due to the enhanced endosomal escape. The increased membrane permeability also facilitates passive diffusion of foreign species across the membrane into the cytosol. After CAP exposure, the MCF-7 cells incubated with Cas9 ribonucleoprotein (Cas9-sgRNA complex, Cas9sg) with a size of about 15 nm show 88.9% uptake efficiency and 65.9% nuclear import efficiency via passive diffusion and ATP-dependent endocytosis pathways. The efficient transportation of active Cas9sg after the CAP treatment leads to 21.7% and 30.2% indel efficiencies in HEK293T and MCF-7 cells, respectively. This CAP-mediated transportation process provides a simple and robust alternative for the delivery of active CRISPR/Cas9 ribonucleoprotein. Additionally, the technique can be extended to other macro-biomolecules and nanomaterials to cater to different biomedical applications.


2016 ◽  
Vol 1 (2) ◽  
pp. 82-86
Author(s):  
Rajesh S Nair ◽  
Betty Babu ◽  
Eeshan Mushtaq

ABSTRACT Introduction Plasma is the fourth state of matter and others are liquid, gas, and solid. Plasma occurs as a natural phenomenon in the universe and appears in the form of fire, in the polar aurora borealis and in the nuclear fusion reactions of the sun. It can be produced artificially which has gained importance in the fields of plasma screens or light sources. Plasma is of two types: Thermal and nonthermal or cold atmospheric plasma (CAP). Thermal plasma has electrons and heavy particles (ions and neutral) at the same temperature. Cold atmospheric plasma is said to be nonthermal as it has electron at a hotter temperature than the heavy particles that are at room temperature. Cold atmospheric plasma is a specific type of plasma, i.e., <104°F at the point of application. It could become a new and painless method to prepare cavities for restoration with improved longevity. Also it is capable of bacterial inactivation and noninflammatory tissue alteration, which makes it an attractive tool for the treatment of dental caries and for composite restorations. Plasma can also be used for tooth whitening. This review focuses on some dental application of plasma. How to cite this article Nair RS, Babu B, Mushtaq E. Cold Atmospheric Plasma in Dentistry. J Oper Dent Endod 2016;1(2):82-86.


RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 42135-42140 ◽  
Author(s):  
Simon Maheux ◽  
David Duday ◽  
Thierry Belmonte ◽  
Christian Penny ◽  
Henry-Michel Cauchie ◽  
...  

The formation of significant NH4+species in saline solutions treated by He/N2cold atmospheric plasma is proposed for the first time as the main process responsible for the fast bacterial inactivation ofE. coliat ambient temperature and physiological pH.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Eleonora Turrini ◽  
Romolo Laurita ◽  
Augusto Stancampiano ◽  
Elena Catanzaro ◽  
Cinzia Calcabrini ◽  
...  

Cold atmospheric plasma (CAP) has shown its antitumor activity in both in vitro and in vivo systems. However, the mechanisms at the basis of CAP-cell interaction are not yet completely understood. The aim of this study is to investigate CAP proapoptotic effect and identify some of the molecular mechanisms triggered by CAP in human T-lymphoblastoid leukemia cells. CAP treatment was performed by means of a wand electrode DBD source driven by nanosecond high-voltage pulses under different operating conditions. The biological endpoints were assessed through flow cytometry and real-time PCR. CAP caused apoptosis in Jurkat cells mediated by p53 upregulation. To test the involvement of intrinsic and/or extrinsic pathway, the expression of Bax/Bcl-2 and caspase-8 was analyzed. The activation of caspase-8 and the upregulation of Bax and Bcl-2 were observed. Moreover, CAP treatment increased ROS intracellular level. The situation reverts after a longer time of treatment. This is probably due to compensatory cellular mechanisms such as the posttranscriptional upregulation of SOD1, CAT, and GSR2. According to ROS increase, CAP induced a significant increase in DNA damage at all treatment conditions. In conclusion, our results provide a deeper understanding of CAP potential in the oncological field and pose the basis for the evaluation of its toxicological profile.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1890
Author(s):  
Jose Gustavo De la Ossa ◽  
Hani El Kadri ◽  
Jorge Gutierrez-Merino ◽  
Thomas Wantock ◽  
Thomas Harle ◽  
...  

A novel strategy involving Olive Leaf Extract (OLE) and Cold Atmospheric Plasma (CAP) was developed as a green antimicrobial treatment. Specifically, we reported a preliminary investigation on the combined use of OLE + CAP against three pathogens, chosen to represent medical and food industries (i.e., E. coli, S. aureus and L. innocua). The results indicated that a concentration of 100 mg/mL (total polyphenols) in OLE can exert an antimicrobial activity, but still insufficient for a total bacterial inactivation. By using plain OLE, we significantly reduced the growth of Gram positive S. aureus and L. innocua, but not Gram-negative E. coli. Instead, we demonstrated a remarkable decontamination effect of OLE + CAP in E. coli, S. aureus and L. innocua samples after 6 h. This effect was optimally maintained up to 24 h in S. aureus strain. E. coli and L. innocua grew again in 24 h. In the latter strain, OLE alone was most effective to significantly reduce bacterial growth. By further adjusting the parameters of OLE + CAP technology, e.g., OLE amount and CAP exposure, it could be possible to prolong the initial powerful decontamination over a longer time. Since OLE derives from a bio-waste and CAP is a non-thermal technology based on ionized air, we propose OLE + CAP as a potential green platform for bacterial decontamination. As a combination, OLE and CAP can lead to better antimicrobial activity than individually and may replace or complement conventional thermal procedures in food and biomedical industries.


2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Sign in / Sign up

Export Citation Format

Share Document