The Nature of Addiction, Compulsion, and the Trance State: An Addict's Limited Range of Dysfunctional Choices

Keyword(s):  
Author(s):  
Rudolf Oldenbourg

The polarized light microscope has the unique potential to measure submicroscopic molecular arrangements dynamically and non-destructively in living cells and other specimens. With the traditional pol-scope, however, single images display only those anisotropic structures that have a limited range of orientations with respect to the polarization axes of the microscope. Furthermore, rapid measurements are restricted to a single image point or single area that exhibits uniform birefringence or other form of optical anisotropy, while measurements comparing several image points take an inordinately long time.We are developing a new kind of polarized light microscope which combines speed and high resolution in its measurement of the specimen anisotropy, irrespective of its orientation. The design of the new pol-scope is based on the traditional polarized light microscope with two essential modifications: circular polarizers replace linear polarizers and two electro-optical modulators replace the traditional compensator. A video camera and computer assisted image analysis provide measurements of specimen anisotropy in rapid succession for all points of the image comprising the field of view.


2006 ◽  
Vol 11 (6) ◽  
pp. 4-7
Author(s):  
Charles N. Brooks ◽  
Richard E. Strain ◽  
James B. Talmage

Abstract The primary function of the acetabular labrum, like that of the glenoid, is to deepen the socket and improve joint stability. Tears of the acetabular labrum are common in older adults but occur in all age groups and with equal frequency in males and females. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fifth Edition, is silent about rating tears, partial or complete excision, or repair of the acetabular labrum. Provocative tests to detect acetabular labrum tears involve hip flexion and rotation; all rely on production of pain in the groin (typically), clicking, and/or locking with passive or active hip motions. Diagnostic tests or procedures rely on x-rays, conventional arthrography, computerized tomography, magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and hip arthroscopy. Hip arthroscopy is the gold standard for diagnosis but is the most invasive and most likely to result in complications, and MRA is about three times more sensitive and accurate in detecting acetabular labral tears than MRI alone. Surgical treatment for acetabular labrum tears usually consists of arthroscopic debridement; results tend to be better in younger patients. In general, an acetabular labral tear, partial labrectomy, or labral repair warrants a rating of 2% lower extremity impairment. Evaluators should avoid double dipping (eg, using both a Diagnosis-related estimates and limited range-of-motion tests).


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2020 ◽  
Vol 3 (3) ◽  
pp. 88-96
Author(s):  
Ine Sintia ◽  
Nyimas Fatimah

Background: Frozen shoulder is a condition of the shoulder joint that experiences inflammation, pain, adhesions, atrophyand shortening of the joint capsule resulting in limited motion. In frozen shoulder patients, the limited range of motion ofthe shoulder joint can affect and reduce functional ability. This study aims to analyze the correlation between the limitedarea of motion of the shoulder joint with the functional ability of frozen shoulder patients at the Medical RehabilitationInstallation Dr. Mohammad Hoesin Palembang. Methods: This study was an observational analytic study, correlationtest, with a cross sectional design. There were 29 frozen shoulder patients who met the inclusion criteria in the MedicalRehabilitation Installation Dr. Mohammad Hoesin Palembang in November 2018 was taken as a sample using consecutivesampling techniques. Functional ability was assessed using the quickDASH questionnaire and the area of motion wasmeasured using a goniometer, then analyzed. Results: The results of the correlation test showed significant resultsbetween functional abilities and the area of motion of the shoulder joints. Active flexion (p = 0.000; r = -0.669), activeextension (p = 0.004; r = -0.520), active abduction (p = 0.000; r = -0.663), active adduction (p = 0.022; r = -0.423 ), passiveflexion (p = 0.001; r = -0.589), passive extension (p = 0.002; r = -0.543), passive abduction (p = 0.000; r = -0.676), passiveadduction (p = 0.038; r = -0.388). Conclusion: There is a significant correlation between limited joint motion andfunctional ability in frozen shoulder patients at the Medical Rehabilitation Installation of Dr. Mohammad HoesinPalembang


2020 ◽  
Vol 31 (2) ◽  
pp. 90-92
Author(s):  
Rob Edwards

Herbicide resistance in problem weeds is now a major threat to global food production, being particularly widespread in wild grasses affecting cereal crops. In the UK, black-grass (Alopecurus myosuroides) holds the title of number one agronomic problem in winter wheat, with the loss of production associated with herbicide resistance now estimated to cost the farming sector at least £0.5 billion p.a. Black-grass presents us with many of the characteristic traits of a problem weed; being highly competitive, genetically diverse and obligately out-crossing, with a growth habit that matches winter wheat. With the UK’s limited arable crop rotations and the reliance on the repeated use of a very limited range of selective herbicides we have been continuously performing a classic Darwinian selection for resistance traits in weeds that possess great genetic diversity and plasticity in their growth habits. The result has been inevitable; the steady rise of herbicide resistance across the UK, which now affects over 2.1 million hectares of some of our best arable land. Once the resistance genie is out of the bottle, it has proven difficult to prevent its establishment and spread. With the selective herbicide option being no longer effective, the options are to revert to cultural control; changing rotations and cover crops, manual rogueing of weeds, deep ploughing and chemical mulching with total herbicides such as glyphosate. While new precision weeding technologies are being developed, their cost and scalability in arable farming remains unproven. As an agricultural scientist who has spent a working lifetime researching selective weed control, we seem to be giving up on a technology that has been a foundation stone of the green revolution. For me it begs the question, are we really unable to use modern chemical and biological technology to counter resistance? I would argue the answer to that question is most patently no; solutions are around the corner if we choose to develop them.


2019 ◽  
Vol 2019 (1) ◽  
pp. 320-325 ◽  
Author(s):  
Wenyu Bao ◽  
Minchen Wei

Great efforts have been made to develop color appearance models to predict color appearance of stimuli under various viewing conditions. CIECAM02, the most widely used color appearance model, and many other color appearance models were all developed based on corresponding color datasets, including LUTCHI data. Though the effect of adapting light level on color appearance, which is known as "Hunt Effect", is well known, most of the corresponding color datasets were collected within a limited range of light levels (i.e., below 700 cd/m2), which was much lower than that under daylight. A recent study investigating color preference of an artwork under various light levels from 20 to 15000 lx suggested that the existing color appearance models may not accurately characterize the color appearance of stimuli under extremely high light levels, based on the assumption that the same preference judgements were due to the same color appearance. This article reports a psychophysical study, which was designed to directly collect corresponding colors under two light levels— 100 and 3000 cd/m2 (i.e., ≈ 314 and 9420 lx). Human observers completed haploscopic color matching for four color stimuli (i.e., red, green, blue, and yellow) under the two light levels at 2700 or 6500 K. Though the Hunt Effect was supported by the results, CIECAM02 was found to have large errors under the extremely high light levels, especially when the CCT was low.


Food Industry ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 23-31
Author(s):  
Sergey Urubkov ◽  
Svetlana Khovanskaya ◽  
Ekaterina Pyrieva ◽  
Olga Georgieva ◽  
Stanislav Smirnov

Diet therapy is one of the main approaches to the treatment of a wide range of diseases of the digestive system. The treatment effectiveness of celiac disease depends on how strictly the patient adheres to a gluten-free diet. It is often disrupted due to the limited range of recommended foods and dishes, especially for children who are particularly sensitive to dietary restrictions. In this case, the development of new types of specialized gluten-free products is relevant, allowing to expand the diet both in terms of nutritional value and taste diversity. This study concerns the recipe developments of dry gluten-free mixtures using rice and amaranth with the inclusion of fruit and vegetable and berry raw materials intended for the nutrition of children over three years old suffering from celiac disease. When developing the recipes, researchers used various combinations of rice and amaranth flour, as well as fruit and vegetable powders. The rice flour composition varied in the range from 15 to 75%; amaranth – from 15 to 45%; fruit and vegetable and berry powders – up to 10%. The finished product was gluten-free cookies, muffins, pancakes made of rice and amaranth. Organoleptic evaluation showed that the studied samples of gluten-free cookies have high quality characteristics, have a pleasant taste and aroma. According to the calculated data, specialized gluten-free dry mixtures intended for children over three years with celiac disease can serve as an important source of: vegetable carbohydrates – from 26.81 to 55.19 g / 100g of finished products; protein – from 4.06 to 11.82 g/100g of finished products; dietary fiber – from 3.82 to 6.36 g/100g of finished products; and energy – from 158.12 to 333.96 kcal/100g of finished products) The developed recipess of gluten-free products can help to provide children with an adequate amount of nutrients and energy.


Author(s):  
Shu Lih Oh ◽  
V. Jahmunah ◽  
N. Arunkumar ◽  
Enas W. Abdulhay ◽  
Raj Gururajan ◽  
...  

AbstractAutism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a person’s life. Autism is influenced by both genetic and environmental factors. Lack of social interaction, communication problems, and a limited range of behaviors and interests are possible characteristics of autism in children, alongside other symptoms. Electroencephalograms provide useful information about changes in brain activity and hence are efficaciously used for diagnosis of neurological disease. Eighteen nonlinear features were extracted from EEG signals of 40 children with a diagnosis of autism spectrum disorder and 37 children with no diagnosis of neuro developmental disorder children. Feature selection was performed using Student’s t test, and Marginal Fisher Analysis was employed for data reduction. The features were ranked according to Student’s t test. The three most significant features were used to develop the autism index, while the ranked feature set was input to SVM polynomials 1, 2, and 3 for classification. The SVM polynomial 2 yielded the highest classification accuracy of 98.70% with 20 features. The developed classification system is likely to aid healthcare professionals as a diagnostic tool to detect autism. With more data, in our future work, we intend to employ deep learning models and to explore a cloud-based detection system for the detection of autism. Our study is novel, as we have analyzed all nonlinear features, and we are one of the first groups to have uniquely developed an autism (ASD) index using the extracted features.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longhua Tang ◽  
Binoy Paulose Nadappuram ◽  
Paolo Cadinu ◽  
Zhiyu Zhao ◽  
Liang Xue ◽  
...  

AbstractQuantum tunnelling offers a unique opportunity to study nanoscale objects with atomic resolution using electrical readout. However, practical implementation is impeded by the lack of simple, stable probes, that are required for successful operation. Existing platforms offer low throughput and operate in a limited range of analyte concentrations, as there is no active control to transport molecules to the sensor. We report on a standalone tunnelling probe based on double-barrelled capillary nanoelectrodes that do not require a conductive substrate to operate unlike other techniques, such as scanning tunnelling microscopy. These probes can be used to efficiently operate in solution environments and detect single molecules, including mononucleotides, oligonucleotides, and proteins. The probes are simple to fabricate, exhibit remarkable stability, and can be combined with dielectrophoretic trapping, enabling active analyte transport to the tunnelling sensor. The latter allows for up to 5-orders of magnitude increase in event detection rates and sub-femtomolar sensitivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farhan Ali ◽  
Serap Aksu

AbstractThe investigation on metalenses have been rapidly developing, aiming to bring compact optical devices with superior properties to the market. Realizing miniature optics at the UV frequency range in particular has been challenging as the available transparent materials have limited range of dielectric constants. In this work we introduce a low absorption loss and low refractive index dielectric material magnesium oxide, MgO, as an ideal candidate for metalenses operating at UV frequencies. We theoretically investigate metalens designs capable of efficient focusing over a broad UV frequency range (200–400 nm). The presented metalenses are composed of sub-wavelength MgO nanoblocks, and characterized according to the geometric Pancharatnam–Berry phase method using FDTD method. The presented broadband metalenses can focus the incident UV light on tight focal spots (182 nm) with high numerical aperture ($$\hbox {NA}\approx 0.8$$ NA ≈ 0.8 ). The polarization conversion efficiency of the metalens unit cell and focusing efficiency of the total metalens are calculated to be as high as 94%, the best value reported in UV range so far. In addition, the metalens unit cell can be hybridized to enable lensing at multiple polarization states. The presented highly efficient MgO metalenses can play a vital role in the development of UV nanophotonic systems and could pave the way towards the world of miniaturization.


Sign in / Sign up

Export Citation Format

Share Document